BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club > Solid-state high-res. NMR
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 05-25-2007, 01:13 AM
Junior Member
 
Join Date: Jul 2005
Posts: 7
Points: 104, Level: 2
Points: 104, Level: 2 Points: 104, Level: 2 Points: 104, Level: 2
Level up: 8%, 46 Points needed
Level up: 8% Level up: 8% Level up: 8%
Activity: 0%
Activity: 0% Activity: 0% Activity: 0%
NMR Credits: 0
NMR Points: 104
Downloads: 0
Uploads: 0
Default Solid-State NMR Reveals Structural and Dynamical Properties of a Membrane Protein

http://pubs.acs.org/cgi-bin/abstract...ja069028m.html

Solid-State NMR Reveals Structural and Dynamical Properties of a Membrane-Anchored Electron-Carrier Protein, Cytochrome b5
Ulrich H. N. Dürr, Kazutoshi Yamamoto,Sang-Choul Im,Lucy Waskell,and Ayyalusamy Ramamoorthy*
*ramamoor@umich.edu

Abstract:
Cytochrome b5 (cyt b5) is a membrane-anchored electron-carrier protein containing a heme in its soluble domain. It enhances the enzymatic turnover of selected members of the cytochrome P450 superfamily of catabolic enzymes, localized in the endoplasmic reticulum of liver cells. Remarkably, its -helical membrane-anchoring domain is indispensable for the cyt b5/cyt P450 interaction. Here, we present the first solid-state NMR studies on holo-cyt b5 in a membrane environment, namely, macroscopically oriented DMPC/DHPC bicelles. We have presented approaches to selectively investigate different domains of the protein using spectral editing NMR techniques that utilize the unique motional properties of each domain. Two-dimensional 1H-15N HIMSELF spectra showed PISA-wheel patterns reporting on the structure and dynamics of the membrane anchor of the protein.
Reply With Quote

  #2  
Old 05-30-2007, 12:43 PM
Junior Member
 
Join Date: May 2007
Posts: 2
Points: 4, Level: 1
Points: 4, Level: 1 Points: 4, Level: 1 Points: 4, Level: 1
Level up: 7%, 46 Points needed
Level up: 7% Level up: 7% Level up: 7%
Activity: 0%
Activity: 0% Activity: 0% Activity: 0%
NMR Credits: 0
NMR Points: 4
Downloads: 0
Uploads: 0
Default

the research work is pretty intresting.
can you post me the full article
Reply With Quote
  #3  
Old 05-30-2007, 12:54 PM
Junior Member
 
Join Date: May 2007
Posts: 2
Points: 4, Level: 1
Points: 4, Level: 1 Points: 4, Level: 1 Points: 4, Level: 1
Level up: 7%, 46 Points needed
Level up: 7% Level up: 7% Level up: 7%
Activity: 0%
Activity: 0% Activity: 0% Activity: 0%
NMR Credits: 0
NMR Points: 4
Downloads: 0
Uploads: 0
Default Gelation mechanism and network structure of mixed solution of low- and high-acyl gell

Shingo Matsukawaa, , and Tokuko Watanabeb
aDepartment of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
bDepartment of Home Economics, Aoyama Gakuin Women's Junior College, 4-4-25 Shibuya, Shibuya-ku, Tokyo 150-8366, Japan
Received 26 September 2006; accepted 25 October 2006. Available online 8 December 2006.





Abstract

The gelation mechanism and the change of the network structure during cooling of the mixed solution of high-acyl (HA) and low-acyl (LA) gellan (containing 0.5% HA gellan and 0.5% LA gellan; hereafter called “mixed solution”) were elucidated on the basis of the results of dynamic viscoelasticity, circular dichroism (CD), and NMR measurements, which provide information about the network formation, the structural change due to random coil-double helix (C–H) transition, and the chain mobility of gellan, respectively. It was demonstrated that HA gellan chains in the mixed solution underwent C–H transition individually to form a network structure at the transition temperature for 1% HA gellan solution (75 °C), where storage modulus G′ and loss modulus G″ were steeply increased and the chain mobility of the HA gellan was restricted. The structural change of the HA gellan chains proceeded gradually with further cooling. At 25 °C, which is the C–H transition temperature for 1% LA gellan solution, LA gellan chains in the mixed solution formed a double helix, where G′ and G″ were slightly increased and the chain mobility of LA gellan was restricted. The results suggest that the double helix formation involves only the same kind of gellan chains even in the mixed solution, and that LA gellan chains decrease the mobility and promote the double helix formation of HA gellan chains, and vice versa.

Keywords: Low-acyl gellan; High-acyl gellan; Sol–gel transition; Random coil-double helix transition; Circular dichroism; NMR
Reply With Quote
Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Proton Detected Solid-State NMR Reveals Intramembrane Polar Networks in a Seven-Helical Transmembrane Protein Proteorhodopsin.
Proton Detected Solid-State NMR Reveals Intramembrane Polar Networks in a Seven-Helical Transmembrane Protein Proteorhodopsin. Proton Detected Solid-State NMR Reveals Intramembrane Polar Networks in a Seven-Helical Transmembrane Protein Proteorhodopsin. J Am Chem Soc. 2011 Sep 16; Authors: Ward ME, Shi L, Lake EM, Krishnamurthy S, Hutchins H, Brown LS, Ladizhansky V Abstract We used high-resolution proton-detected multidimensional NMR to study the solvent-exposed parts of an integral seven-helical membrane proton pump proteorhodopsin...
nmrlearner Journal club 0 09-17-2011 08:21 PM
Molecular simulations and solid-state NMR investigate dynamical structure in rhodopsin activation.
Molecular simulations and solid-state NMR investigate dynamical structure in rhodopsin activation. Molecular simulations and solid-state NMR investigate dynamical structure in rhodopsin activation. Biochim Biophys Acta. 2011 Aug 8; Authors: Mertz B, Struts AV, Feller SE, Brown MF Abstract Rhodopsin has served as the primary model for studying G protein-coupled receptors (GPCRs)-the largest group in the human genome, and consequently a primary target for pharmaceutical development. Understanding the functions and activation mechanisms of...
nmrlearner Journal club 0 08-20-2011 03:31 PM
Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA.
Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA. Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA. J Am Chem Soc. 2011 Mar 1; Authors: Renault M, Bos MP, Tommassen J, Baldus M Multidomain proteins constitute a large part of prokaryotic and eukaryotic proteomes and play fundamental roles in various physiological processes. However, their structural characterization is challenging because of their large size and...
nmrlearner Journal club 0 03-03-2011 12:34 PM
Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA
Solid-State NMR on a Large Multidomain Integral Membrane Protein: The Outer Membrane Protein Assembly Factor BamA Marie Renault, Martine P. Bos, Jan Tommassen and Marc Baldus http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja109469c/aop/images/medium/ja-2010-09469c_0004.gif Journal of the American Chemical Society DOI: 10.1021/ja109469c http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/9XN1qiW-S-I
nmrlearner Journal club 0 03-02-2011 02:01 AM
The structural and topological analysis of membrane-associated polypeptides by oriented solid-state NMR spectroscopy: Established concepts and novel developments.
The structural and topological analysis of membrane-associated polypeptides by oriented solid-state NMR spectroscopy: Established concepts and novel developments. The structural and topological analysis of membrane-associated polypeptides by oriented solid-state NMR spectroscopy: Established concepts and novel developments. Biophys Chem. 2010 Nov 12; Authors: Bechinger B, Resende JM, Aisenbrey C Solid-state NMR spectroscopy is a powerful technique for the investigation of membrane-associated peptides and proteins as well as their interactions with...
nmrlearner Journal club 0 12-15-2010 12:03 PM
[NMR paper] How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli.
How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli. Related Articles How to prepare membrane proteins for solid-state NMR: A case study on the alpha-helical integral membrane protein diacylglycerol kinase from E. coli. Chembiochem. 2005 Sep;6(9):1693-700 Authors: Lorch M, Faham S, Kaiser C, Weber I, Mason AJ, Bowie JU, Glaubitz C Several studies have demonstrated that it is viable to use microcrystalline preparations of water-soluble proteins as...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Comparison of the structural and dynamical properties of holo and apo bovine alpha-la
Comparison of the structural and dynamical properties of holo and apo bovine alpha-lactalbumin by NMR spectroscopy. Related Articles Comparison of the structural and dynamical properties of holo and apo bovine alpha-lactalbumin by NMR spectroscopy. J Mol Biol. 2001 Mar 30;307(3):885-98 Authors: Wijesinha-Bettoni R, Dobson CM, Redfield C In the presence of 0.5 M NaCl at pH 7.1, the Ca(2+)-free apo form of recombinant bovine alpha-lactalbumin (BLA) is sufficiently stabilised in its native state to give well-resolved NMR spectra at 20 degrees C....
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] Structural and dynamical properties of a denatured protein. Heteronuclear 3D NMR expe
Structural and dynamical properties of a denatured protein. Heteronuclear 3D NMR experiments and theoretical simulations of lysozyme in 8 M urea. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Structural and dynamical properties of a denatured protein. Heteronuclear 3D NMR experiments and theoretical simulations of lysozyme in 8 M urea. Biochemistry. 1997 Jul 22;36(29):8977-91 Authors: Schwalbe H, Fiebig KM, Buck M, Jones JA, Grimshaw SB, Spencer A, Glaser SJ, Smith LJ, Dobson CM ...
nmrlearner Journal club 0 08-22-2010 05:08 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:54 AM.


Map