BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > Online News
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 09-22-2015, 06:40 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,734
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Study of PEGylated model protein reveals porous structure based on PEG size - Phys.Org

Study of PEGylated model protein reveals porous structure based on PEG size - Phys.Org


Phys.Org


Study of PEGylated model protein reveals porous structure based on PEG size
Phys.Org
NMR studies using 1H-15N heteronuclear single-quantum correlation spectroscopy showed that the PEG-Pc had well-dispersed resonances that indicated the protein remained folded in a stable conformation. Chemical shift perturbations were only observed ...


Read here
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
'Invisible' protein structure explains the power of enzymes - Phys.Org
'Invisible' protein structure explains the power of enzymes - Phys.Org http://www.bionmr.com//t3.gstatic.com/images?q=tbn:ANd9GcRJeF5G2jmoqIG-4dY1tKobWbSiwmf4FmwBqublhTOiHh6zkZAYoKD-5N0dKxqGaUYjP_yL-4s Phys.Org <img alt="" height="1" width="1"> 'Invisible' protein structure explains the power of enzymes Phys.Org The discovery has been made possible thanks to a broad scientific approach where numerous advanced biophysical techniques have been used; Nuclear Magnetic Resonance (NMR) and x-ray crystallography being the main techniques. "One of the ... and more &raquo;
nmrlearner Online News 0 07-03-2015 07:40 PM
[NMR paper] The NMR-Rosetta capsid model of M13 bacteriophage reveals a quadrupled hydrophobic packing epitope.
The NMR-Rosetta capsid model of M13 bacteriophage reveals a quadrupled hydrophobic packing epitope. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-custom-pnas_full.gif Related Articles The NMR-Rosetta capsid model of M13 bacteriophage reveals a quadrupled hydrophobic packing epitope. Proc Natl Acad Sci U S A. 2015 Jan 27;112(4):971-6 Authors: Morag O, Sgourakis NG, Baker D, Goldbourt A Abstract Filamentous phage are elongated semiflexible ssDNA viruses...
nmrlearner Journal club 0 04-24-2015 08:51 PM
PFG-NMR self-diffusion in casein dispersions: Effects of probe size and protein aggregate size
PFG-NMR self-diffusion in casein dispersions: Effects of probe size and protein aggregate size June 2013 Publication year: 2013 Source:Food Hydrocolloids, Volume 31, Issue 2</br> </br> The self-diffusion coefficients of different molecular weight PEGs (Polyethylene glycol) and casein particles were measured, using a pulsed-gradient nuclear magnetic resonance technique (PFG-NMR), in native phosphocaseinate (NPC) and sodium caseinate (SC) dispersions where caseins are not structured into micelles. The dependence of the PEG self-diffusion coefficient on the PEG size, casein...
nmrlearner Journal club 0 02-03-2013 10:05 AM
3D structure of an unmodified G protein-coupled receptor in its natural habitat - Phys.Org
3D structure of an unmodified G protein-coupled receptor in its natural habitat - Phys.Org <img alt="" height="1" width="1" /> 3D structure of an unmodified G protein-coupled receptor in its natural habitat Phys.Org Using NMR spectroscopy, the team mapped the arrangement of atoms in a protein called CXCR1, which detects the inflammatory signal interleukin 8 and, through a G protein located inside the cell, triggers a cascade of events that can mobilize immune ... and more &raquo; Read here
nmrlearner Online News 0 11-04-2012 05:53 AM
Crystal structure of a cyanobacterial protein associated with nitrogen fixation - Phys.Org
Crystal structure of a cyanobacterial protein associated with nitrogen fixation - Phys.Org <img alt="" height="1" width="1" /> Crystal structure of a cyanobacterial protein associated with nitrogen fixation Phys.Org NMR and other biophysical data collected at EMSL confirmed that the biological unit of DUF269 in solution was the same as observed in the asymmetric unit of the crystal, a dimer. Further biochemical experiments are in progress to determine the ... Read here
nmrlearner Online News 0 07-24-2012 08:28 PM
(13) C Solid state NMR study of the (13) C-labeled peptide, (E)(8) GGLGGQGAG(A)(6) GGAGQGGYGG as a model for the local structure of Nephila clavipes dragline silk (MaSp1) before and after spinning.
(13) C Solid state NMR study of the (13) C-labeled peptide, (E)(8) GGLGGQGAG(A)(6) GGAGQGGYGG as a model for the local structure of Nephila clavipes dragline silk (MaSp1) before and after spinning. (13) C Solid state NMR study of the (13) C-labeled peptide, (E)(8) GGLGGQGAG(A)(6) GGAGQGGYGG as a model for the local structure of Nephila clavipes dragline silk (MaSp1) before and after spinning. Biopolymers. 2011 Sep 12; Authors: Yazawa K, Yamaguchi E, Knight D, Asakura T Abstract We prepared the water soluble model peptide, (E)(8)...
nmrlearner Journal club 0 09-14-2011 08:07 PM
Rapid identification of protein-protein interfaces for the construction of a complex model based on multiple unassigned signals by using time-sharing NMR measurements.
Rapid identification of protein-protein interfaces for the construction of a complex model based on multiple unassigned signals by using time-sharing NMR measurements. Rapid identification of protein-protein interfaces for the construction of a complex model based on multiple unassigned signals by using time-sharing NMR measurements. J Struct Biol. 2011 Apr 9; Authors: Kodama Y, Reese ML, Shimba N, Ono K, Kanamori E, Dötsch V, Noguchi S, Fukunishi Y, Suzuki EI, Shimada I, Takahashi H Protein-protein interactions are necessary for various cellular...
nmrlearner Journal club 0 04-20-2011 07:15 PM
1H NMR-based metabolic profiling reveals inherent biological variation in yeast and nematode model systems
1H NMR-based metabolic profiling reveals inherent biological variation in yeast and nematode model systems Abstract The application of metabolomics to human and animal model systems is poised to provide great insight into our understanding of disease etiology and the metabolic changes that are associated with these conditions. However, metabolomic studies have also revealed that there is significant, inherent biological variation in human samples and even in samples from animal model systems where the animals are housed under carefully controlled conditions. This inherent biological...
nmrlearner Journal club 0 03-03-2011 02:06 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:18 PM.


Map