BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > Online News
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 04-25-2019, 05:39 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,715
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Structure and dynamics conspire in the evolution of affinity between intrinsically disordered proteins - Science Advances

Structure and dynamics conspire in the evolution of affinity between intrinsically disordered proteins - Science Advances

Structure and dynamics conspire in the evolution of affinity between intrinsically disordered proteins Science AdvancesIn every established species, protein-protein interactions have evolved such that they are fit for purpose. However, the molecular details of the evolution of new ...

Read here
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Structure and dynamics conspire in the evolution of affinity between intrinsically disordered proteins - Science Advances
Structure and dynamics conspire in the evolution of affinity between intrinsically disordered proteins - Science Advances Structure and dynamics conspire in the evolution of affinity between intrinsically disordered proteins Science AdvancesIn every established species, protein-protein interactions have evolved such that they are fit for purpose. However, the molecular details of the evolution of new ... Read here
nmrlearner Online News 0 01-07-2019 05:49 AM
[NMR paper] Atomic resolution conformational dynamics of intrinsically disordered proteins from NMR spin relaxation.
Atomic resolution conformational dynamics of intrinsically disordered proteins from NMR spin relaxation. Atomic resolution conformational dynamics of intrinsically disordered proteins from NMR spin relaxation. Prog Nucl Magn Reson Spectrosc. 2017 Nov;102-103:43-60 Authors: Salvi N, Abyzov A, Blackledge M Abstract Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful experimental approaches for investigating the conformational behaviour of intrinsically disordered proteins (IDPs). IDPs represent a significant...
nmrlearner Journal club 0 11-22-2017 02:01 PM
[NMR paper] Analytical description of NMR relaxation highlights correlated dynamics in intrinsically disordered proteins.
Analytical description of NMR relaxation highlights correlated dynamics in intrinsically disordered proteins. Related Articles Analytical description of NMR relaxation highlights correlated dynamics in intrinsically disordered proteins. Angew Chem Int Ed Engl. 2017 Aug 22;: Authors: Blackledge M, Salvi N, Abyzov A Abstract The dynamic fluctuations of intrinsically disordered proteins (IDPs) define their function. Although experimental nuclear magnetic resonance (NMR) relaxation reveals the motional complexity of these highly...
nmrlearner Journal club 0 08-25-2017 04:11 AM
[NMR paper] Analytical description of NMR relaxation highlights correlated dynamics in intrinsically disordered proteins
Analytical description of NMR relaxation highlights correlated dynamics in intrinsically disordered proteins The dynamic fluctuations of intrinsically disordered proteins (IDPs) define their function. Although experimental nuclear magnetic resonance (NMR) relaxation reveals the motional complexity of these highly flexible proteins, the absence of physical models describing IDP dynamics hinders their mechanistic interpretation. Combining molecular dynamics simulation and NMR, we introduce a framework in which distinct motions are attributed to local libration, backbone dihedral angle...
nmrlearner Journal club 0 08-23-2017 03:18 AM
Atomic Resolution Conformational Dynamics of Intrinsically Disordered Proteins from NMR Spin Relaxation
Atomic Resolution Conformational Dynamics of Intrinsically Disordered Proteins from NMR Spin Relaxation Publication date: Available online 10 July 2017 Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br> Author(s): Nicola Salvi, Anton Abyzov, Martin Blackledge</br> Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful experimental approaches for investigating the conformational behavior of intrinsically disordered proteins (IDPs). IDPs represent a significant fraction of all proteomes, and, despite their importance for...
nmrlearner Journal club 0 07-11-2017 09:20 AM
[NMR paper] Multi-Timescale Dynamics in Intrinsically Disordered Proteins from NMR Relaxation and Molecular Simulation.
Multi-Timescale Dynamics in Intrinsically Disordered Proteins from NMR Relaxation and Molecular Simulation. Related Articles Multi-Timescale Dynamics in Intrinsically Disordered Proteins from NMR Relaxation and Molecular Simulation. J Phys Chem Lett. 2016 Jun 14; Authors: Salvi N, Abyzov A, Blackledge M Abstract Intrinsically disordered proteins (IDPs) access highly diverse ensembles of conformations in their functional states. Although this plasticity is essential to their function, little is known about the dynamics underlying...
nmrlearner Journal club 0 06-15-2016 11:12 PM
[NMR paper] NMR contributions to structural dynamics studies of intrinsically disordered proteins.
NMR contributions to structural dynamics studies of intrinsically disordered proteins. Related Articles NMR contributions to structural dynamics studies of intrinsically disordered proteins. J Magn Reson. 2014 Apr;241:74-85 Authors: Konrat R Abstract Intrinsically disordered proteins (IDPs) are characterized by substantial conformational plasticity. Given their inherent structural flexibility X-ray crystallography is not applicable to study these proteins. In contrast, NMR spectroscopy offers unique opportunities for structural and dynamic...
nmrlearner Journal club 0 03-25-2014 11:49 AM
NMR contributions to structural dynamics studies of intrinsically disordered proteins
NMR contributions to structural dynamics studies of intrinsically disordered proteins Publication date: April 2014 Source:Journal of Magnetic Resonance, Volume 241</br> Author(s): Robert Konrat</br> Intrinsically disordered proteins (IDPs) are characterized by substantial conformational plasticity. Given their inherent structural flexibility X-ray crystallography is not applicable to study these proteins. In contrast, NMR spectroscopy offers unique opportunities for structural and dynamic studies of IDPs. The past two decades have witnessed significant development...
nmrlearner Journal club 0 03-21-2014 12:52 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:37 AM.


Map