BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > Online News
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 12-28-2023, 10:50 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,778
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Site-specific protein backbone deuterium 2H? quadrupolar patterns by proton-detected quadruple-resonance 3D ... - ScienceDirect

Site-specific protein backbone deuterium 2H? quadrupolar patterns by proton-detected quadruple-resonance 3D ... - ScienceDirect

Site-specific protein backbone deuterium 2H? quadrupolar patterns by proton-detected quadruple-resonance 3D ... ScienceDirect Read here
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Site-specific protein backbone deuterium 2H? quadrupolar patterns by proton-detected quadruple-resonance 3D 2H?c?NH MAS NMR spectroscopy
Site-specific protein backbone deuterium 2H? quadrupolar patterns by proton-detected quadruple-resonance 3D 2H?c?NH MAS NMR spectroscopy A novel deuterium-excited and proton-detected quadruple-resonance three-dimensional (3D) ²H(?)c(?)NH MAS nuclear magnetic resonance (NMR) method is presented to obtain site-specific ²H(?) deuterium quadrupolar couplings from protein backbone, as an extension to the 2D version of the experiment reported earlier. Proton-detection results in high sensitivity compared to the heteronuclei detection methods. Utilizing four independent radiofrequency (RF)...
nmrlearner Journal club 0 03-31-2023 09:21 AM
Site-specific protein methyl deuterium quadrupolar patterns by proton-detected 3D 2Hâ??13Câ??1H MAS NMR spectroscopy
Site-specific protein methyl deuterium quadrupolar patterns by proton-detected 3D 2Hâ??13Câ??1H MAS NMR spectroscopy Abstract Determination of protein structure and dynamics is key to understand the mechanism of protein action. Perdeuterated proteins have been used to obtain high resolution/sensitivty NMR experiments via proton-detection. These methods utilizes 1H, 13C and 15N nuclei for chemical shift dispersion or relaxation probes, despite the existing abundant deuterons. However, a high-sensitivity NMR method to utilize deuterons and e.g....
nmrlearner Journal club 0 01-09-2022 12:39 AM
[NMR paper] Site-specific protein methyl deuterium quadrupolar patterns by proton-detected 3D (2)H-(13)C-(1)H MAS NMR spectroscopy
Site-specific protein methyl deuterium quadrupolar patterns by proton-detected 3D (2)H-(13)C-(1)H MAS NMR spectroscopy Determination of protein structure and dynamics is key to understand the mechanism of protein action. Perdeuterated proteins have been used to obtain high resolution/sensitivty NMR experiments via proton-detection. These methods utilizes ¹H, ^(13)C and ^(15)N nuclei for chemical shift dispersion or relaxation probes, despite the existing abundant deuterons. However, a high-sensitivity NMR method to utilize deuterons and e.g. determine site-specific deuterium quadrupolar...
nmrlearner Journal club 0 01-09-2022 12:39 AM
[NMR paper] Towards automatic protein backbone assignment using proton-detected 4D solid-state NMR data.
Towards automatic protein backbone assignment using proton-detected 4D solid-state NMR data. Related Articles Towards automatic protein backbone assignment using proton-detected 4D solid-state NMR data. J Biomol NMR. 2014 Sep 6; Authors: Xiang S, Chevelkov V, Becker S, Lange A Abstract We introduce an efficient approach for sequential protein backbone assignment based on two complementary proton-detected 4D solid-state NMR experiments that correlate /Ni with CAi/COi or CAi-1/COi-1. The resulting 4D spectra exhibit excellent...
nmrlearner Journal club 0 09-07-2014 12:36 PM
Towards automatic protein backbone assignment using proton-detected 4D solid-state NMR data
Towards automatic protein backbone assignment using proton-detected 4D solid-state NMR data Abstract We introduce an efficient approach for sequential protein backbone assignment based on two complementary proton-detected 4D solid-state NMR experiments that correlate \( {\text{H}}_{{\text{i}}}^{{\text{N}}} \) /Ni with CAi/COi or CAiâ??1/COiâ??1. The resulting 4D spectra exhibit excellent sensitivity and resolution and are amenable to (semi-)automatic assignment...
nmrlearner Journal club 0 09-06-2014 07:41 AM
Site-Specific Solid-State NMR Detection of Hydrogen-Deuterium Exchange Reveals Conformational Changes in a 7-Helical Transmembrane Protein.
Site-Specific Solid-State NMR Detection of Hydrogen-Deuterium Exchange Reveals Conformational Changes in a 7-Helical Transmembrane Protein. Site-Specific Solid-State NMR Detection of Hydrogen-Deuterium Exchange Reveals Conformational Changes in a 7-Helical Transmembrane Protein. Biophys J. 2011 Aug 3;101(3):L23-L25 Authors: Wang S, Shi L, Kawamura I, Brown LS, Ladizhansky V Solid-state NMR spectroscopy is an efficient tool for following conformational dynamics of membrane proteins at atomic resolution. We used this technique for the site-specific...
nmrlearner Journal club 0 08-03-2011 12:00 PM
[NMR paper] Site-specific backbone dynamics from a crystalline protein by solid-state NMR spectro
Site-specific backbone dynamics from a crystalline protein by solid-state NMR spectroscopy. Related Articles Site-specific backbone dynamics from a crystalline protein by solid-state NMR spectroscopy. J Am Chem Soc. 2004 Sep 22;126(37):11422-3 Authors: Giraud N, Böckmann A, Lesage A, Penin F, Blackledge M, Emsley L Site-specific nitrogen-15 longitudinal relaxation rates are measured for the microcrystalline dimeric form of the protein Crh using multidimensional high-resolution solid-state NMR methods. The measured rates are used to provide a...
nmrlearner Journal club 0 11-24-2010 10:01 PM
Site-Specific Protein Backbone and Side-Chain NMR Chemical Shift and Relaxation Analy
Site-Specific Protein Backbone and Side-Chain NMR Chemical Shift and Relaxation Analysis of Human Vinexin SH3 Domain using a Genetically Encoded (15)N/(19)F-Labeled Unnatural Amino Acid. Related Articles Site-Specific Protein Backbone and Side-Chain NMR Chemical Shift and Relaxation Analysis of Human Vinexin SH3 Domain using a Genetically Encoded (15)N/(19)F-Labeled Unnatural Amino Acid. Biochem Biophys Res Commun. 2010 Oct 11; Authors: Shi P, Xi Z, Wang H, Shi C, Xiong Y, Tian C SH3 is a ubiquitous domain mediating protein-protein interactions....
nmrlearner Journal club 0 10-16-2010 03:56 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:14 AM.


Map