[NMR paper] A De Novo Heterodimeric Due Ferri Protein Minimizes the Release of Reactive Intermediates in Dioxygen-Dependent Oxidation
A De Novo Heterodimeric Due Ferri Protein Minimizes the Release of Reactive Intermediates in Dioxygen-Dependent Oxidation
Metalloproteins utilize O2 as an oxidant, and they often achieve a 4-electron reduction without H2O2 or oxygen radical release. Several proteins have been designed to catalyze one or two-electron oxidative chemistry, but the de novo design of a protein that catalyzes the net 4-electron reduction of O2 has not been reported yet. We report the construction of a diiron-binding four-helix bundle, made up of two different covalently linked ?2 monomers, through click...
nmrlearner
Journal club
0
12-06-2017 08:02 AM
[NMR paper] A De Novo Heterodimeric Due Ferri Protein Minimizes the Release of Reactive Intermediates in Dioxygen-dependent Oxidation
A De Novo Heterodimeric Due Ferri Protein Minimizes the Release of Reactive Intermediates in Dioxygen-dependent Oxidation
Metalloproteins utilize O? as an oxidant, and they often achieve a 4-electron reduction without H?O? or oxygen radical release. Several proteins have been designed to catalyze one or two-electron oxidative chemistry, but the de novo design of a protein that catalyzes the net 4-electron reduction of O? has not been reported yet. We report here the construction of a diiron-binding four-helix bundle, made up of two different covalently linked ?2 monomers, through click...
Protein lysine-N? alkylation and O-phosphorylation mediated by DTT-generated reactive oxygen species
Protein lysine-N? alkylation and O-phosphorylation mediated by DTT-generated reactive oxygen species
Abstract
Reactive oxygen species (ROS) play crucial roles in physiology and pathology. In this report, we use NMR spectroscopy and mass spectrometry (MS) to demonstrate that proteins (galectin-1, ubiquitin, RNase, cytochrome c, myoglobin, and lysozyme) under reducing conditions with dithiothreitol (DTT) become alkylated at lysine-N? groups and O-phosphorylated at serine and threonine residues. These adduction reactions only occur in the presence of monophosphate, potassium, trace metals...
nmrlearner
Journal club
0
02-03-2013 09:54 AM
[NMR paper] The use of 19F NMR in the study of protein alkylation by fluorinated reactive interme
The use of 19F NMR in the study of protein alkylation by fluorinated reactive intermediates.
Related Articles The use of 19F NMR in the study of protein alkylation by fluorinated reactive intermediates.
Adv Exp Med Biol. 1991;283:735-8
Authors: Harris JW, Anders MW