BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > Online News
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-20-2015, 05:44 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default pUL69 of Human Cytomegalovirus Recruits the Cellular Protein Arginine ... - Journal of Virology

pUL69 of Human Cytomegalovirus Recruits the Cellular Protein Arginine ... - Journal of Virology



pUL69 of Human Cytomegalovirus Recruits the Cellular Protein Arginine ...
Journal of Virology
Remarkably, nuclear magnetic resonance (NMR) analyses revealed the same α-helical structures for pUL69 sequences encoding either the wild type R1/R2 boxes or a UAP56/PRMT6 binding-deficient derivative, thereby excluding the possibility that R/A ...


Read here
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Determinants of Dengue Virus NS4A Protein Oligomerization - Journal of Virology
Determinants of Dengue Virus NS4A Protein Oligomerization - Journal of Virology <img alt="" height="1" width="1"> Determinants of Dengue Virus NS4A Protein Oligomerization Journal of Virology Nuclear magnetic resonance (NMR) analysis of NS4A amino acids 17 to 80 suggests that residues L31, L52, E53, G66, and G67 could participate in oligomerization. Ala substitution for 15 flavivirus conserved NS4A residues revealed that these amino acids ... Read here
nmrlearner Online News 0 05-16-2015 01:45 PM
Mapping the Interactions between the NS4B and NS3 Proteins of Dengue Virus - Journal of Virology
Mapping the Interactions between the NS4B and NS3 Proteins of Dengue Virus - Journal of Virology <img alt="" height="1" width="1"> Mapping the Interactions between the NS4B and NS3 Proteins of Dengue Virus Journal of Virology Using nuclear magnetic resonance (NMR), we found that the isolated cytoplasmic loop of NS4B is flexible, with a tendency to form a three-turn α-helix and two short β-strands. Upon binding to the NS3 helicase, 12 amino acids within the cytoplasmic loop ... Read here
nmrlearner Online News 0 03-14-2015 06:49 AM
Mapping the Interactions between the NS4B and NS3 Proteins of Dengue Virus - Journal of Virology
Mapping the Interactions between the NS4B and NS3 Proteins of Dengue Virus - Journal of Virology <img alt="" height="1" width="1"> Mapping the Interactions between the NS4B and NS3 Proteins of Dengue Virus Journal of Virology Using nuclear magnetic resonance (NMR), we found that the isolated cytoplasmic loop of NS4B is flexible, with a tendency to form a three-turn α-helix and two short β-strands. Upon binding to the NS3 helicase, 12 amino acids within the cytoplasmic loop ... Read here
nmrlearner Online News 0 03-10-2015 07:22 PM
[NMR paper] Probing arginine side-chains and their dynamics with carbon-detected NMR spectroscopy: application to the 42 kDa human histone deacetylase 8 at high pH.
Probing arginine side-chains and their dynamics with carbon-detected NMR spectroscopy: application to the 42 kDa human histone deacetylase 8 at high pH. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles Probing arginine side-chains and their dynamics with carbon-detected NMR spectroscopy: application to the 42 kDa human histone deacetylase 8 at high pH. Angew Chem Int Ed Engl. 2013 Mar 11;52(11):3145-7 Authors: Werbeck ND, Kirkpatrick J,...
nmrlearner Journal club 0 01-29-2014 02:01 PM
[NMR paper] Probing Arginine Side-Chains and Their Dynamics with Carbon-Detected NMR Spectroscopy: Application to the 42 kDa Human Histone Deacetylase 8 at High pH
From Mendeley Biomolecular NMR group: Probing Arginine Side-Chains and Their Dynamics with Carbon-Detected NMR Spectroscopy: Application to the 42 kDa Human Histone Deacetylase 8 at High pH Angewandte Chemie International Edition (2013). Pages: n/a-n/a. Nicolas D. Werbeck, John Kirkpatrick, D. Flemming Hansen et al. Published using Mendeley: The reference manager for researchers
nmrlearner Journal club 0 10-17-2013 12:49 PM
[NMR paper] Probing Arginine Side-Chains and Their Dynamics with Carbon-Detected NMR Spectroscopy: Application to the 42 kDa Human Histone Deacetylase 8 at High pH
From Mendeley Biomolecular NMR group: Probing Arginine Side-Chains and Their Dynamics with Carbon-Detected NMR Spectroscopy: Application to the 42 kDa Human Histone Deacetylase 8 at High pH Angewandte Chemie International Edition (2013). Pages: n/a-n/a. Nicolas D. Werbeck, John Kirkpatrick, D. Flemming Hansen et al. Published using Mendeley: The reference manager for researchers
nmrlearner Journal club 0 04-11-2013 09:27 PM
[NMR paper] Probing Arginine Side-Chains and Their Dynamics with Carbon-Detected NMR Spectroscopy: Application to the 42 kDa Human Histone Deacetylase 8 at High pH
From Mendeley Biomolecular NMR group: Probing Arginine Side-Chains and Their Dynamics with Carbon-Detected NMR Spectroscopy: Application to the 42 kDa Human Histone Deacetylase 8 at High pH Angewandte Chemie International Edition (2013). Pages: n/a-n/a. Nicolas D. Werbeck, John Kirkpatrick, D. Flemming Hansen et al. Published using Mendeley: The library management tool for researchers
nmrlearner Journal club 0 04-11-2013 03:08 PM
[NMR paper] NMR solution structure of type II human cellular retinoic acid binding protein: impli
NMR solution structure of type II human cellular retinoic acid binding protein: implications for ligand binding. Related Articles NMR solution structure of type II human cellular retinoic acid binding protein: implications for ligand binding. Biochemistry. 1998 Sep 15;37(37):12727-36 Authors: Wang L, Li Y, Abildgaard F, Markley JL, Yan H The structure of human apo-cellular retinoic acid binding protein II (apo-CRABPII) in solution at pH 7.3 has been determined by NMR spectroscopy. The sequential assignments of the 1H, 13C, and 15N resonances...
nmrlearner Journal club 0 11-17-2010 11:15 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:20 PM.


Map