BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > Online News
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 10-12-2024, 02:58 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,733
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Picosecond Dynamics of a Small Molecule in Its Bound State with an Intrinsically Disordered Protein - ACS Publications

Picosecond Dynamics of a Small Molecule in Its Bound State with an Intrinsically Disordered Protein - ACS Publications

Picosecond Dynamics of a Small Molecule in Its Bound State with an Intrinsically Disordered Protein ACS Publications Read here
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Synergies of Single Molecule Fluorescence and NMR for the Study of Intrinsically Disordered Proteins
Synergies of Single Molecule Fluorescence and NMR for the Study of Intrinsically Disordered Proteins Single molecule fluorescence and nuclear magnetic resonance spectroscopy (NMR) are two very powerful techniques for the analysis of intrinsically disordered proteins (IDPs). Both techniques have individually made major contributions to deciphering the complex properties of IDPs and their interactions, and it has become evident that they can provide very complementary views on the distance-dynamics relationships of IDP systems. We now review the first approaches using both NMR and single...
nmrlearner Journal club 0 01-22-2022 02:38 AM
[NMR paper] Quantitative Description of Intrinsically Disordered Proteins Using Single-Molecule FRET, NMR, and SAXS
Quantitative Description of Intrinsically Disordered Proteins Using Single-Molecule FRET, NMR, and SAXS Studying the conformational landscape of intrinsically disordered and partially folded proteins is challenging and only accessible to a few solution state techniques, such as nuclear magnetic resonance (NMR), small-angle scattering techniques, and single-molecule Förster resonance energy transfer (smFRET). While each of the techniques is sensitive to different properties of the disordered chain, such as local structural propensities, overall dimension, or intermediate- and long-range...
nmrlearner Journal club 0 11-25-2021 02:57 PM
[ASAP] Conformational Ensembles of an Intrinsically Disordered Protein Consistent with NMR, SAXS, and Single-Molecule FRET
Conformational Ensembles of an Intrinsically Disordered Protein Consistent with NMR, SAXS, and Single-Molecule FRET Gregory-Neal W. Gomes, Mickae?l Krzeminski, Ashley Namini, Erik W. Martin, Tanja Mittag, Teresa Head-Gordon, Julie D. Forman-Kay, and Claudiu C. Gradinaru https://pubs.acs.org/na101/home/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/jacs.0c02088/20200904/images/medium/ja0c02088_0006.gif Journal of the American Chemical Society DOI: 10.1021/jacs.0c02088 http://feeds.feedburner.com/~r/acs/jacsat/~4/ouvFj6sHuyQ
nmrlearner Journal club 0 09-13-2020 09:18 AM
[NMR paper] Conformational ensembles of an intrinsically disordered protein consistent with NMR, SAXS and single-molecule FRET.
Conformational ensembles of an intrinsically disordered protein consistent with NMR, SAXS and single-molecule FRET. Related Articles Conformational ensembles of an intrinsically disordered protein consistent with NMR, SAXS and single-molecule FRET. J Am Chem Soc. 2020 Aug 25;: Authors: Gomes GW, Krzeminski M, Namini A, Martin EW, Mittag T, Head-Gordon T, Forman-Kay JD, Gradinaru CC Abstract Intrinsically disordered proteins (IDPs) have fluctuating heterogeneous conformations, which makes structural characterization challenging,...
nmrlearner Journal club 0 08-26-2020 02:46 PM
[NMR paper] Cell-Free Protein Synthesis of Small Intrinsically Disordered Proteins for NMR Spectroscopy.
Cell-Free Protein Synthesis of Small Intrinsically Disordered Proteins for NMR Spectroscopy. Related Articles Cell-Free Protein Synthesis of Small Intrinsically Disordered Proteins for NMR Spectroscopy. Methods Mol Biol. 2020;2141:233-245 Authors: Isaksson L, Pedersen A Abstract Cell-free protein synthesis (CFPS) is an established method to produce recombinant proteins and has been used in a wide variety of applications. The use of CFPS has almost from the onset been favorably linked to the production of isotopically...
nmrlearner Journal club 0 07-23-2020 11:23 PM
[NMR paper] Revealing Conformational Variants of Solution-Phase Intrinsically Disordered Tau Protein at the Single-Molecule Level
Revealing Conformational Variants of Solution-Phase Intrinsically Disordered Tau Protein at the Single-Molecule Level Intrinsically disordered proteins, such as tau protein, adopt a variety of conformations in solution, complicating solution-phase structural studies. We employ an anti-Brownian electrokinetic (ABEL) trap to prolong measurements of single tau proteins in solution. Once trapped, we record the fluorescence anisotropy to investigate the diversity of conformations sampled by the single molecules. A distribution of anisotropy values obtained from trapped tau protein is...
nmrlearner Journal club 0 10-24-2017 05:09 PM
Small Angle Neutron Scattering Studies of R67 Dihydrofolate Reductase, a Tetrameric Protein with Intrinsically Disordered N-Termini
Small Angle Neutron Scattering Studies of R67 Dihydrofolate Reductase, a Tetrameric Protein with Intrinsically Disordered N-Termini http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.7b00822/20171023/images/medium/bi-2017-008226_0008.gif Biochemistry DOI: 10.1021/acs.biochem.7b00822 http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/ihyNePfMkNU More...
nmrlearner Journal club 0 10-24-2017 01:41 AM
Conserved Helix-Flanking Prolines Modulate Intrinsically Disordered Protein:Target Affinity by Altering the Lifetime of the Bound Complex
Conserved Helix-Flanking Prolines Modulate Intrinsically Disordered Protein:Target Affinity by Altering the Lifetime of the Bound Complex http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.7b00179/20170426/images/medium/bi-2017-00179h_0005.gif Biochemistry DOI: 10.1021/acs.biochem.7b00179 http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/juO1BIhAbrk More...
nmrlearner Journal club 0 04-27-2017 04:02 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:12 AM.


Map