BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > Online News
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 04-22-2024, 02:18 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Optimal isotope labelling for NMR protein structure determinations - Nature.com

Optimal isotope labelling for NMR protein structure determinations - Nature.com

Optimal isotope labelling for NMR protein structure determinations Nature.com Read here
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Segmental isotope labelling and solid-state NMR of a 12 × 59*kDa motor protein: identification of structural variability.
Segmental isotope labelling and solid-state NMR of a 12 × 59*kDa motor protein: identification of structural variability. Related Articles Segmental isotope labelling and solid-state NMR of a 12 × 59*kDa motor protein: identification of structural variability. J Biomol NMR. 2018 Jun 12;: Authors: Wiegand T, Cadalbert R, von Schroetter C, Allain FH, Meier BH Abstract Segmental isotope labelling enables the NMR study of an individual domain within a multidomain protein, but still in the context of the entire full-length protein....
nmrlearner Journal club 0 06-28-2018 02:38 PM
Segmental isotope labelling and solid-state NMR of a 12â??Ã?â??59Â*kDa motor protein: identification of structural variability
Segmental isotope labelling and solid-state NMR of a 12â??Ã?â??59Â*kDa motor protein: identification of structural variability Abstract Segmental isotope labelling enables the NMR study of an individual domain within a multidomain protein, but still in the context of the entire full-length protein. Compared to the fully labelled protein, spectral overlap can be greatly reduced. We here describe segmental labelling of the (double-) hexameric DnaB helicase from Helicobacter pylori using a ligation approach. Solid-state spectra demonstrate that the...
nmrlearner Journal club 0 06-12-2018 08:40 AM
[NMR paper] A new strategy for sequential assignment of intrinsically unstructured proteins based on 15N single isotope labelling
A new strategy for sequential assignment of intrinsically unstructured proteins based on 15N single isotope labelling Publication date: Available online 23 July 2013 Source:Journal of Magnetic Resonance</br> Author(s): Juan Lopez , Puneet Ahuja , Melanie Gérard , Jean Michel Wieruszeski , Guy Lippens</br> We describe a new efficient strategy for the sequential assignment of amide resonances of a conventional 15N-1H HSQC spectrum of intrinsically unfolded proteins, based on composite NOESY-TOCSY and TOCSY-NOESY mixing times. These composite mixing times lead to a...
nmrlearner Journal club 0 07-23-2013 09:52 PM
Erratum to: Suppression of isotope scrambling in cell-free protein synthesis by broadband inhibition of PLP enymes for selective 15N-labelling and production of perdeuterated proteins in H2O
Erratum to: Suppression of isotope scrambling in cell-free protein synthesis by broadband inhibition of PLP enymes for selective 15N-labelling and production of perdeuterated proteins in H2O Erratum to: Suppression of isotope scrambling in cell-free protein synthesis by broadband inhibition of PLP enymes for selective 15N-labelling and production of perdeuterated proteins in H2O Content Type Journal Article Category Erratum Pages 1-1 DOI 10.1007/s10858-011-9562-9 Authors
nmrlearner Journal club 0 09-20-2011 05:02 AM
Suppression of isotope scrambling in cell-free protein synthesis by broadband inhibition of PLP enymes for selective 15N-labelling and production of perdeuterated proteins in H2O
Suppression of isotope scrambling in cell-free protein synthesis by broadband inhibition of PLP enymes for selective 15N-labelling and production of perdeuterated proteins in H2O Abstract Selectively isotope labelled protein samples can be prepared in vivo or in vitro from selectively labelled amino acids but, in many cases, metabolic conversions between different amino acids result in isotope scrambling. The best results are obtained by cell-free protein synthesis, where metabolic enzymes are generally less active, but isotope scrambling can never be suppressed completely. We show that...
nmrlearner Journal club 0 02-16-2011 09:34 PM
Cell-free expression and stable isotope labelling strategies for membrane proteins
Cell-free expression and stable isotope labelling strategies for membrane proteins Abstract Membrane proteins are highly underrepresented in the structural data-base and remain one of the most challenging targets for functional and structural elucidation. Their roles in transport and cellular communication, furthermore, often make over-expression toxic to their host, and their hydrophobicity and structural complexity make isolation and reconstitution a complicated task, especially in cases where proteins are targeted to inclusion bodies. The development of cell-free expression systems...
nmrlearner Journal club 0 01-09-2011 12:46 PM
[NMR paper] Amino acid type selective isotope labelling of the multidrug ABC transporter LmrA for
Amino acid type selective isotope labelling of the multidrug ABC transporter LmrA for solid-state NMR studies. Related Articles Amino acid type selective isotope labelling of the multidrug ABC transporter LmrA for solid-state NMR studies. FEBS Lett. 2004 Jun 18;568(1-3):117-21 Authors: Mason AJ, Siarheyeva A, Haase W, Lorch M, van Veen H, Glaubitz C The ABC transporter LmrA in Lactococcus lactis confers resistance to a wide range of antibiotics and cytotoxic drugs and is a functional homologue of P-glycoprotein. Recently, solid-state NMR...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Biosynthetic 15N and 13C isotope labelling of glutathione in the mixed disulfide with
Biosynthetic 15N and 13C isotope labelling of glutathione in the mixed disulfide with Escherichia coli glutaredoxin documented by sequence-specific NMR assignments. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles Biosynthetic 15N and 13C isotope labelling of glutathione in the mixed disulfide with Escherichia coli glutaredoxin documented by sequence-specific NMR assignments. Eur J Biochem. 1993 Dec 1;218(2):327-34 Authors: Bushweller JH,...
nmrlearner Journal club 0 08-22-2010 03:01 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:48 AM.


Map