[NMR paper] Probing Slow Chemical Exchange at Carbonyl Sites in Proteins by Chemical Exchange Saturation Transfer NMR Spectroscopy.
Probing Slow Chemical Exchange at Carbonyl Sites in Proteins by Chemical Exchange Saturation Transfer NMR Spectroscopy.
Probing Slow Chemical Exchange at Carbonyl Sites in Proteins by Chemical Exchange Saturation Transfer NMR Spectroscopy.
Angew Chem Int Ed Engl. 2013 Feb 28;
Authors: Vallurupalli P, Kay LE
Abstract
Seeing the invisible: A 13 CO NMR chemical exchange saturation transfer (CEST) experiment for the study of "invisible" excited protein states with lifetimes on the order of 5-50 ms has been developed. The 13 CO chemical...
nmrlearner
Journal club
0
03-02-2013 11:45 AM
[Stan NMR blog] Why are spectral lines Lorentzian
Why are spectral lines Lorentzian
Explanation of the central role of the Lorentzian lineshape in spectroscopy
Source: Stan blog library
nmrlearner
News from NMR blogs
0
11-23-2010 07:10 AM
[Stan NMR blog] Why are spectral lines Lorentzian
Why are spectral lines Lorentzian
Explanation of the central role of the Lorentzian lineshape in spectroscopy
More...
nmrlearner
News from NMR blogs
0
08-21-2010 05:42 PM
NMR question about chemical shifts and frequency difference between two lines?
The 13C chemical shifts for the carbonyl and methyl resonances of acetone are 206.68 and29.92 ppm, respectively (referenced to TMS at 0 ppm).a) If this spectrum was run on a Varian INOVA 400 NMR spectrometer, what is the frequencydifference in Hz between the two lines? (Assume <ref = 100.0650368 MHz) (2 points)b) What is the difference in magnetic field experienced by the carbonyl carbon vs. the methylcarbons. (4 points)thank you Allision!!so then i haver a difference of 17,717 Hz.for b) now I do not have any textbooks for this course but i did go to the library and picked up 4 differnet...