Receptor Activity Modifying Proteins Have LimitedEffects on the Class B G Protein-Coupled Receptor Calcitonin Receptor-LikeReceptor Stalk
Receptor Activity Modifying Proteins Have LimitedEffects on the Class B G Protein-Coupled Receptor Calcitonin Receptor-LikeReceptor Stalk
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.7b01180/20180207/images/medium/bi-2017-01180k_0008.gif
Biochemistry
DOI: 10.1021/acs.biochem.7b01180
http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/bichaw/~4/8Z5smrN57aI
More...
nmrlearner
Journal club
0
02-08-2018 04:02 AM
[NMR paper] The dynamics of the G protein-coupled neuropeptide Y2 receptor in monounsaturated membranes investigated by solid-state NMR spectroscopy.
The dynamics of the G protein-coupled neuropeptide Y2 receptor in monounsaturated membranes investigated by solid-state NMR spectroscopy.
The dynamics of the G protein-coupled neuropeptide Y2 receptor in monounsaturated membranes investigated by solid-state NMR spectroscopy.
J Biomol NMR. 2015 Jan 6;
Authors: Thomas L, Kahr J, Schmidt P, Krug U, Scheidt HA, Huster D
Abstract
In contrast to the static snapshots provided by protein crystallography, G protein-coupled receptors constitute a group of proteins with highly dynamic...
nmrlearner
Journal club
0
01-06-2015 07:59 PM
The dynamics of the G protein-coupled neuropeptide Y2 receptor in monounsaturated membranes investigated by solid-state NMR spectroscopy
The dynamics of the G protein-coupled neuropeptide Y2 receptor in monounsaturated membranes investigated by solid-state NMR spectroscopy
Abstract
In contrast to the static snapshots provided by protein crystallography, G protein-coupled receptors constitute a group of proteins with highly dynamic properties, which are required in the receptorsâ?? function as signaling molecule. Here, the human neuropeptide Y2 receptor was reconstituted into a model membrane composed of monounsaturated phospholipids and solid-state NMR was used to characterize...
nmrlearner
Journal club
0
01-05-2015 04:06 PM
[NMR paper] G-protein-coupled receptor structure, ligand binding and activation as studied by solid-state NMR spectroscopy.
G-protein-coupled receptor structure, ligand binding and activation as studied by solid-state NMR spectroscopy.
G-protein-coupled receptor structure, ligand binding and activation as studied by solid-state NMR spectroscopy.
Biochem J. 2013 Mar 15;450(3):443-57
Authors: Ding X, Zhao X, Watts A
Abstract
GPCRs (G-protein-coupled receptors) are versatile signalling molecules at the cell surface and make up the largest and most diverse family of membrane receptors in the human genome. They convert a large variety of extracellular stimuli into...
nmrlearner
Journal club
0
03-01-2013 09:57 PM
NMR Analysis of a Kinetically Trapped Intermediate of a Disulfide-Deficient Mutant of the Starch-Binding Domain of Glucoamylase.
NMR Analysis of a Kinetically Trapped Intermediate of a Disulfide-Deficient Mutant of the Starch-Binding Domain of Glucoamylase.
NMR Analysis of a Kinetically Trapped Intermediate of a Disulfide-Deficient Mutant of the Starch-Binding Domain of Glucoamylase.
J Mol Biol. 2011 Jul 23;
Authors: Sugimoto H, Noda Y, Segawa SI
A thermally unfolded disulfide-deficient mutant of the starch-binding domain of glucoamylase refolds into a kinetically trapped metastable intermediate when subjected to a rapid lowering of temperature. We attempted to characterise...