BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > Online News
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-27-2021, 10:43 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,734
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Computational protein design utilizes unnatural amino acids - Phys.Org

Computational protein design utilizes unnatural amino acids - Phys.Org

Computational protein design utilizes unnatural amino acids Phys.Org Read here
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Lanthanoid tagging via an unnatural amino acid for protein structure characterization
Lanthanoid tagging via an unnatural amino acid for protein structure characterization Abstract Lanthanoid pseudo-contact shift (PCS) provides long-range structural information between a paramagnetic tag and protein nuclei. However, for proteins with native cysteines, site-specific attachment may only utilize functional groups orthogonal to sulfhydryl chemistry. Here we report two lanthanoid probes, DTTA-C3-yne and DTTA-C4-yne, which can be conjugated to an unnatural amino acid pAzF in the target protein via azide-alkyne cycloaddition. Demonstrated...
nmrlearner Journal club 0 04-01-2017 04:09 PM
[NMR paper] Chiral discrimination of ?-hydroxy acids and N-Ts-?-amino acids induced by tetraaza macrocyclic chiral solvating agents by using (1)H NMR spectroscopy.
Chiral discrimination of ?-hydroxy acids and N-Ts-?-amino acids induced by tetraaza macrocyclic chiral solvating agents by using (1)H NMR spectroscopy. Related Articles Chiral discrimination of ?-hydroxy acids and N-Ts-?-amino acids induced by tetraaza macrocyclic chiral solvating agents by using (1)H NMR spectroscopy. Org Biomol Chem. 2017 Jan 27;: Authors: Lv C, Feng L, Zhao H, Wang G, Stavropoulos P, Ai L Abstract In the field of chiral recognition, reported chiral discrimination by (1)H NMR spectroscopy has mainly focused on...
nmrlearner Journal club 0 01-28-2017 08:29 PM
Incorporation of an Unnatural Amino Acid as a Domain-SpecificFluorescence Probe in a Two-Domain Protein
Incorporation of an Unnatural Amino Acid as a Domain-SpecificFluorescence Probe in a Two-Domain Protein http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.6b00898/20161129/images/medium/bi-2016-00898m_0004.gif Biochemistry DOI: 10.1021/acs.biochem.6b00898 http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/W6SaDh6q3p0 More...
nmrlearner Journal club 0 11-29-2016 09:02 PM
[NMR paper] The application of DOSY NMR and molecular dynamics simulations to explore the mechanism(s) of micelle binding of antimicrobial peptides containing unnatural amino acids.
The application of DOSY NMR and molecular dynamics simulations to explore the mechanism(s) of micelle binding of antimicrobial peptides containing unnatural amino acids. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-7315-19-Wiley_FullText_120x30_orange.png Related Articles The application of DOSY NMR and molecular dynamics simulations to explore the mechanism(s) of micelle binding of antimicrobial peptides containing unnatural amino acids. Biopolymers. 2013 Aug;99(8):548-61 Authors: Clark TD,...
nmrlearner Journal club 0 04-23-2016 09:24 PM
[NMR paper] Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and (19)F-NMR.
Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and (19)F-NMR. Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and (19)F-NMR. Nat Commun. 2015;6:8202 Authors: Yang F, Yu X, Liu C, Qu CX, Gong Z, Liu HD, Li FH, Wang HM, He DF, Yi F, Song C, Tian CL, Xiao KH, Wang JY, Sun JP Abstract Specific arrestin conformations are coupled to distinct downstream effectors, which underlie the functions of many...
nmrlearner Journal club 0 09-09-2015 11:49 AM
Paramagnetic relaxation enhancement of membrane proteins by incorporation of the metal-chelating unnatural amino acid 2-amino-3-(8-hydroxyquinolin-3-yl)propanoic acid (HQA)
Paramagnetic relaxation enhancement of membrane proteins by incorporation of the metal-chelating unnatural amino acid 2-amino-3-(8-hydroxyquinolin-3-yl)propanoic acid (HQA) Abstract The use of paramagnetic constraints in protein NMR is an active area of research because of the benefits of long-range distance measurements (>10Â*Ã?). One of the main issues in successful execution is the incorporation of a paramagnetic metal ion into diamagnetic proteins. The most common metal ion tags are relatively long aliphatic chains attached to the side chain of a...
nmrlearner Journal club 0 11-28-2014 11:37 AM
An efficient protocol for incorporation of an unnatural amino acid in perdeuterated recombinant proteins using glucose-based media
An efficient protocol for incorporation of an unnatural amino acid in perdeuterated recombinant proteins using glucose-based media Abstract The in vivo incorporation of unnatural amino acids into proteins is a well-established technique requiring an orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for the unnatural amino acid that is incorporated at a position encoded by a TAG amber codon. Although this technology provides unique opportunities to engineer protein structures, poor protein yields are usually obtained in deuterated media, hampering its application in the protein NMR...
nmrlearner Journal club 0 02-21-2012 03:40 AM
Site-specific labeling of proteins with NMR-active unnatural amino acids
Site-specific labeling of proteins with NMR-active unnatural amino acids Abstract A large number of amino acids other than the canonical amino acids can now be easily incorporated in vivo into proteins at genetically encoded positions. The technology requires an orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for the unnatural amino acid that is added to the media while a TAG amber or frame shift codon specifies the incorporation site in the protein to be studied. These unnatural amino acids can be isotopically labeled and provide unique opportunities for site-specific labeling...
nmrlearner Journal club 0 01-09-2011 12:46 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:12 PM.


Map