[NMR paper] Cholesterol Interaction with the Trimeric HIV Fusion Protein gp41 in Lipid Bilayers Investigated by Solid-State NMR Spectroscopy and Molecular Dynamics Simulations.
Cholesterol Interaction with the Trimeric HIV Fusion Protein gp41 in Lipid Bilayers Investigated by Solid-State NMR Spectroscopy and Molecular Dynamics Simulations.
Related Articles Cholesterol Interaction with the Trimeric HIV Fusion Protein gp41 in Lipid Bilayers Investigated by Solid-State NMR Spectroscopy and Molecular Dynamics Simulations.
J Mol Biol. 2020 Jun 24;:
Authors: Kwon B, Mandal T, Elkins MR, Oh Y, Cui Q, Hong M
Abstract
HIV-1 entry into cells is mediated by the fusion protein gp41. Cholesterol plays an important...
Cholesterol-binding site of the influenza M2 protein in lipid bilayers from solid-state NMR [Biophysics and Computational Biology]
Cholesterol-binding site of the influenza M2 protein in lipid bilayers from solid-state NMR
Matthew R. Elkins, Jonathan K. Williams, Martin D. Gelenter, Peng Dai, Byungsu Kwon, Ivan V. Sergeyev, Bradley L. Pentelute, Mei Hong...
Date: 2017-12-05
The influenza M2 protein not only forms a proton channel but also mediates membrane scission in a cholesterol-dependent manner to cause virus budding and release. The atomic interaction of cholesterol with M2, as with most eukaryotic membrane proteins, has long been elusive. We have now determined the cholesterol-binding site of... Read More
...
nmrlearner
Journal club
0
12-06-2017 08:02 AM
[NMR paper] Cholesterol-binding site of the influenza M2 protein in lipid bilayers from solid-state NMR.
Cholesterol-binding site of the influenza M2 protein in lipid bilayers from solid-state NMR.
Cholesterol-binding site of the influenza M2 protein in lipid bilayers from solid-state NMR.
Proc Natl Acad Sci U S A. 2017 Nov 20;:
Authors: Elkins MR, Williams JK, Gelenter MD, Dai P, Kwon B, Sergeyev IV, Pentelute BL, Hong M
Abstract
The influenza M2 protein not only forms a proton channel but also mediates membrane scission in a cholesterol-dependent manner to cause virus budding and release. The atomic interaction of cholesterol...
nmrlearner
Journal club
0
11-22-2017 02:01 PM
[NMR paper] Solid-state NMR spectroscopy of the HIV gp41 membrane fusion protein supports intermolecular antiparallel ? sheet fusion peptide structure in the final six-helix bundle state.
Solid-state NMR spectroscopy of the HIV gp41 membrane fusion protein supports intermolecular antiparallel ? sheet fusion peptide structure in the final six-helix bundle state.
Related Articles Solid-state NMR spectroscopy of the HIV gp41 membrane fusion protein supports intermolecular antiparallel ? sheet fusion peptide structure in the final six-helix bundle state.
J Mol Biol. 2013 Nov 15;
Authors: Sackett K, Nethercott MJ, Zheng Z, Weliky DP
Abstract
The HIV gp41 protein catalyzes fusion between viral and target cell membranes. Although...
nmrlearner
Journal club
0
11-20-2013 12:52 PM
Solid-state NMR spectroscopy of the HIV gp41 membrane fusion protein supports intermolecular antiparallel ? sheet fusion peptide structure in the final six-helix bundle state
Solid-state NMR spectroscopy of the HIV gp41 membrane fusion protein supports intermolecular antiparallel ? sheet fusion peptide structure in the final six-helix bundle state
Publication date: Available online 16 November 2013
Source:Journal of Molecular Biology</br>
Author(s): Kelly Sackett , Matthew J. Nethercott , Zhaoxiong Zheng , David P. Weliky</br>
The HIV gp41 protein catalyzes fusion between viral and target cell membranes. Although the ~20-residue N-terminal fusion peptide (FP) region is critical for fusion, the structure of this region is not...