BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > Online News
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 07-24-2024, 08:25 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default C NMR investigation of intrinsically disordered proteins at 1.2 GHz - Nature.com

C NMR investigation of intrinsically disordered proteins at 1.2 GHz - Nature.com

C NMR investigation of intrinsically disordered proteins at 1.2 GHz Nature.com Read here
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
In-cell 13C NMR spectroscopy for the study of intrinsically disordered proteins - Nature.com
In-cell 13C NMR spectroscopy for the study of intrinsically disordered proteins - Nature.com In-cell 13C NMR spectroscopy for the study of intrinsically disordered proteins Nature.com Read here
nmrlearner Online News 0 06-13-2024 04:00 PM
Optimal 13C NMR investigation of intrinsically disordered proteins at 1.2 GHz - Nature.com
Optimal 13C NMR investigation of intrinsically disordered proteins at 1.2 GHz - Nature.com Optimal 13C NMR investigation of intrinsically disordered proteins at 1.2 GHz Nature.com Read here
nmrlearner Online News 0 01-27-2024 01:53 PM
[NMR paper] Optimal 13C NMR investigation of intrinsically disordered proteins at 1.2 GHz
Optimal 13C NMR investigation of intrinsically disordered proteins at 1.2 GHz Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for characterizing biomolecules such as proteins and nucleic acids at atomic resolution. Increased magnetic field strengths drive progress in biomolecular NMR applications, leading to improved performance, e.g., higher resolution. A new class of NMR spectrometers with a 28.2 T magnetic field (1.2 GHz ¹H frequency) has been commercially available since the end of 2019. The availability of ultra-high-field NMR instrumentation... More...
nmrlearner Journal club 0 12-14-2023 10:45 AM
[NMR paper] Exclusively heteronuclear NMR experiments for the investigation of intrinsically disordered proteins: focusing on proline residues
Exclusively heteronuclear NMR experiments for the investigation of intrinsically disordered proteins: focusing on proline residues NMR represents a key spectroscopic technique that contributes to the emerging field of highly flexible, intrinsically disordered proteins (IDPs) or protein regions (IDRs) that lack a stable three-dimensional structure. A set of exclusively heteronuclear NMR experiments tailored for proline residues, highly abundant in IDPs/IDRs, are presented here. They provide a valuable complement to the widely used approach based on amide proton detection, filling the gap...
nmrlearner Journal club 0 10-31-2023 10:49 AM
Low-resolution description of the conformational space for intrinsically disordered proteins | Scientific Reports - Nature.com
Low-resolution description of the conformational space for intrinsically disordered proteins | Scientific Reports - Nature.com Low-resolution description of the conformational space for intrinsically disordered proteins | Scientific Reports Nature.com Read here
nmrlearner Online News 0 11-09-2022 05:20 PM
Artificial intelligence guided conformational mining of intrinsically disordered proteins | Communications Biology - Nature.com
Artificial intelligence guided conformational mining of intrinsically disordered proteins | Communications Biology - Nature.com Artificial intelligence guided conformational mining of intrinsically disordered proteins | Communications Biology Nature.com Read here
nmrlearner Online News 0 06-23-2022 06:33 AM
Investigation of Intrinsically Disordered Proteins through Exchange with Hyperpolarized Water
From The DNP-NMR Blog: Investigation of Intrinsically Disordered Proteins through Exchange with Hyperpolarized Water p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Kurzbach, D., et al., Investigation of Intrinsically Disordered Proteins through Exchange with Hyperpolarized Water. Angew. Chem. Int. Ed., 2017. 56(1): p. 389-392. http://dx.doi.org/10.1002/anie.201608903
nmrlearner News from NMR blogs 0 02-28-2017 12:02 AM
[NMR paper] Investigation of Intrinsically Disordered Proteins through Exchange with Hyperpolarized Water
Investigation of Intrinsically Disordered Proteins through Exchange with Hyperpolarized Water Hyperpolarized water can selectively enhance NMR signals of rapidly exchanging protons in osteopontin (OPN), a metastasis-associated intrinsically disordered protein (IDP), at near-physiological pH and temperature. The transfer of magnetization from hyperpolarized water is limited to solvent-exposed residues and therefore selectively enhances signals in 1H-15N correlation spectra. Binding to the polysaccharide heparin was found to induce the unfolding of preformed structural elements in OPN.A...
nmrlearner Journal club 0 12-05-2016 01:06 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:21 PM.


Map