MARS is a program for robust automatic backbone assignment of 13C/15N labeled proteins. It can be applied independent of the assignment complexity, it does not require tight thresholds for establishing sequential connectivity or detailed adjustment of these thresholds, it can work with a wide variety of NMR experiments and it is robust against missing chemical shift information. In case of a known 3D structure, residual dipolar couplings can be used to enhance assignment.
Compared to other currently available programs MARS is applicable to proteins above 15 kDa using only Ca and Cb chemical shift information with connectivity thresholds as high as 0.5 ppm and it is applicable to proteins with very high degeneracy such as partially or fully unfolded proteins. It offers improved assignment scores for proteins where data are missing for a substantial portion of residues and it has a good tolerance against erroneous chemical shifts. MARS assignment results can be directly read into the program SPARKY. This allows visual validation of the assignment results. Thus, several cycles of automatic assignment using MARS and manual validation on the screen can be performed, in order to complete assignment even in difficult cases.
Did you find this post helpful? |
Similar Threads
Thread
Thread Starter
Forum
Replies
Last Post
High dimensional and high resolution pulse sequences for backbone resonance assignment of intrinsically disordered proteins
High dimensional and high resolution pulse sequences for backbone resonance assignment of intrinsically disordered proteins
Abstract Four novel 5D (HACA(N)CONH, HNCOCACB, (HACA)CON(CA)CONH, (H)NCO(NCA)CONH), and one 6D ((H)NCO(N)CACONH) NMR pulse sequences are proposed. The new experiments employ non-uniform sampling that enables achieving high resolution in indirectly detected dimensions. The experiments facilitate resonance assignment of intrinsically disordered proteins. The novel pulse sequences were successfully tested using δ subunit (20 kDa) of Bacillus subtilis RNA polymerase...
nmrlearner
Journal club
0
02-21-2012 03:40 AM
Backbone assignment of perdeuterated proteins using long-range H/C-dipolar transfers
Backbone assignment of perdeuterated proteins using long-range H/C-dipolar transfers
Abstract For micro-crystalline proteins, solid-state nuclear magnetic resonance spectroscopy of perdeuterated samples can provide spectra of unprecedented quality. Apart from allowing to detect sparsely introduced protons and thereby increasing the effective resolution for a series of sophisticated techniques, deuteration can provide extraordinary coherence lifetimesâ??obtainable for all involved nuclei virtually without decoupling and enabling the use of scalar magnetization transfers. Unfortunately,...
nmrlearner
Journal club
0
12-17-2011 04:44 AM
5D 13C-detected experiments for backbone assignment of unstructured proteins with a very low signal dispersion
5D 13C-detected experiments for backbone assignment of unstructured proteins with a very low signal dispersion
Abstract Two novel 5D NMR experiments (CACONCACO, NCOCANCO) for backbone assignment of disordered proteins are presented. The pulse sequences exploit relaxation properties of the unstructured proteins and combine the advantages of 13C-direct detection, non-uniform sampling, and longitudinal relaxation optimization to maximize the achievable resolution and minimize the experimental time. The pulse sequences were successfully tested on the sample of partially disordered delta...
nmrlearner
Journal club
0
03-22-2011 07:32 PM
Sparsely-sampled High-resolution 4-D Experiments for Efficient Backbone Resonance Assignment of Disordered Proteins
Sparsely-sampled High-resolution 4-D Experiments for Efficient Backbone Resonance Assignment of Disordered Proteins
Publication year: 2011
Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 4 January 2011</br>
Jie, Wen , Jihui, Wu , Pei, Zhou</br>
Intrinsically disordered proteins (IDPs) play important roles in many critical cellular processes. Due to their limited chemical shift dispersion, IDPs often require four pairs of resonance connectivities (H?, C?, C? and CO) for establishing sequential backbone assignment. Because most conventional 4-D...
nmrlearner
Journal club
0
01-05-2011 11:03 AM
Pseudo-4D triple resonance experiments to resolve HN overlap in the backbone assignment of unfolded proteins
Pseudo-4D triple resonance experiments to resolve HN overlap in the backbone assignment of unfolded proteins
Abstract The solution NMR resonance assignment of the protein backbone is most commonly carried out using triple resonance experiments that involve 15N and 1HN resonances. The assignment becomes problematic when there is resonance overlap of 15Nâ??1HN cross peaks. For such residues, one cannot unambiguously link the â??leftâ?? side of the NH root to the â??rightâ?? side, and the residues associated with such overlapping HN resonances remain often unassigned. Here we present a...
nmrlearner
Journal club
0
12-31-2010 08:38 PM
Optimization of amino acid type-specific (13)C and (15)N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm.
Optimization of amino acid type-specific (13)C and (15)N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm.
Optimization of amino acid type-specific (13)C and (15)N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm.
J Biomol NMR. 2010 Dec 18;
Authors: Hefke F, Bagaria A, Reckel S, Ullrich SJ, Dötsch V, Glaubitz C, Güntert P
We present a computational method for finding optimal labeling patterns for the backbone...
nmrlearner
Journal club
0
12-21-2010 01:00 PM
Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm
Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm
Abstract We present a computational method for finding optimal labeling patterns for the backbone assignment of membrane proteins and other large proteins that cannot be assigned by conventional strategies. Following the approach of Kainosho and Tsuji (Biochemistry 21:6273â??6279 (1982)), types of amino acids are labeled with 13C or/and 15N such that cross peaks between 13CO(i â?? 1) and 15NH(i) result only for pairs...
nmrlearner
Journal club
0
12-21-2010 02:14 AM
SAGA: rapid automatic mainchain NMR assignment for large proteins
Abstract Here we describe a new algorithm for automatically determining the mainchain sequential assignment of NMR spectra for proteins. Using only the customary triple resonance experiments, assignments can be quickly found for not only small proteins having rather complete data, but also for large proteins, even when only half the residues can be assigned. The result of the calculation is not the single best assignment according to some criterion, but rather a large number of satisfactory assignments that are summarized in such a way as to help the user identify portions of the sequence...