BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > NMR Questions and Answers
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 01-23-2005, 03:06 PM
Junior Member
 
Join Date: Jan 2005
Posts: 1
Points: 12, Level: 1
Points: 12, Level: 1 Points: 12, Level: 1 Points: 12, Level: 1
Level up: 23%, 38 Points needed
Level up: 23% Level up: 23% Level up: 23%
Activity: 0%
Activity: 0% Activity: 0% Activity: 0%
NMR Credits: 0
NMR Points: 12
Downloads: 0
Uploads: 0
Default Answered: Hi guys I need to help to restate this small pragraph? Chemical shift?solid state physics?

The chemical shift The chemical shift is one of the most important observables in nuclear magnetic resonance. It provides valuable information about the chemical environment around a nucleus. In a real spin system, nuclei are surrounded by atomic and molecular electron clouds which interact with the nuclear spin angular moment. The principal influence of the surrounding electrons is the magnetic screening which results when electronic orbitals are perturbed by the applied magnetic field BO. The effect of the magnetic screening (shielding), called nuclear shielding, can enhance or oppose the main field. This shielding interaction is isotropic in liquids but in general it has rotational anisotropy in solids. The spin Hamiltonian describing the shielding interaction is therefore Hcs=-S.I.Bo=-g I. segma . BoWhere S is the shielding tensor and σ is the chemical shift tensor which describes the orientation dependence of the interaction. The averaging of the interaction over all possible random orientations in a crystal sample produces a line-broadening which in this case is field dependent.
Reply With Quote


Did you find this post helpful? Yes | No
Best Answer - Posted by lil
Atomic and molecular electron clouds magnetically screen the nucleus of an atom or molecule from a field B0 through pertubations of the electron orbitals, called nuclear shielding. The angular dependence of nuclear shielding in solids gives the spin Hamiltonian in terms of shielding tensor S and chemical shift tensor σHcs = -S I B0 = -g I σ B0Averaging over all possible molecular orientations within a crystal leads to field dependent line broadening.

Content provided by Yahoo Answers.

  #2  
Old 01-23-2005, 03:06 PM
lil lil is offline
Junior Member
 
Join Date: Jan 2005
Posts: 1
Points: 2, Level: 1
Points: 2, Level: 1 Points: 2, Level: 1 Points: 2, Level: 1
Level up: 3%, 48 Points needed
Level up: 3% Level up: 3% Level up: 3%
Activity: 0%
Activity: 0% Activity: 0% Activity: 0%
NMR Credits: 0
NMR Points: 2
Downloads: 0
Uploads: 0
Provided Answers: 1
Default Hi guys I need to help to restate this small pragraph? Chemical shift?solid state physics?

Atomic and molecular electron clouds magnetically screen the nucleus of an atom or molecule from a field B0 through pertubations of the electron orbitals, called nuclear shielding. The angular dependence of nuclear shielding in solids gives the spin Hamiltonian in terms of shielding tensor S and chemical shift tensor σHcs = -S I B0 = -g I σ B0Averaging over all possible molecular orientations within a crystal leads to field dependent line broadening.

Content provided by Yahoo Answers.
Reply With Quote


1 out of 1 members found this post helpful. Did you find this post helpful? Yes | No
Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR900 blog] Cover article in Physical Chemistry Chemical Physics
Cover article in Physical Chemistry Chemical Physics Cory M. Widdifield, Alex D. Bain, and David L. Bryce, "Definitive Solid-State 185/187Re NMR Spectral Evidence for and Analysis of the Origin of High-Order Quadrupole-Induced Effects for I = 5/2," Physical Chemistry Chemical Physics 13 (2011) 12413-12420. (Cover Article) http://dx.doi.org/10.1039/c1cp20572b This is the tenth cover article featuring results obtained using resources of the National Ultrahigh-Field NMR Facility for Solids. See our cover gallery and the complete list of research publications enabled by the Facility here...
nmrlearner News from NMR blogs 0 07-05-2011 05:52 AM
Two-dimensional concurrent HMQC-COSY as an approach for small molecule chemical shift assignment and compound identification
Two-dimensional concurrent HMQC-COSY as an approach for small molecule chemical shift assignment and compound identification Abstract Chemical shift assignment is the first step toward the structure elucidation of natural products and other chemical compounds. We propose here the use of 2D concurrent HMQC-COSY as an experiment for rapid chemical shift assignment of small molecules. This experiment provides well-dispersed 1Hâ??13C peak patterns that are distinctive for different functional groups plus 1Hâ??1H COSY connectivities that serve to identify adjacent groups. The COSY diagonal...
nmrlearner Journal club 0 03-09-2011 04:19 AM
[NMR paper] Magic-angle spinning solid-state NMR spectroscopy of the beta1 immunoglobulin binding domain of protein G (GB1): 15N and 13C chemical shift assignments and conformational analysis.
Magic-angle spinning solid-state NMR spectroscopy of the beta1 immunoglobulin binding domain of protein G (GB1): 15N and 13C chemical shift assignments and conformational analysis. Related Articles Magic-angle spinning solid-state NMR spectroscopy of the beta1 immunoglobulin binding domain of protein G (GB1): 15N and 13C chemical shift assignments and conformational analysis. J Am Chem Soc. 2005 Sep 7;127(35):12291-305 Authors: Franks WT, Zhou DH, Wylie BJ, Money BG, Graesser DT, Frericks HL, Sahota G, Rienstra CM Magic-angle spinning...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Structure of an elastin-mimetic polypeptide by solid-state NMR chemical shift analysi
Structure of an elastin-mimetic polypeptide by solid-state NMR chemical shift analysis. Related Articles Structure of an elastin-mimetic polypeptide by solid-state NMR chemical shift analysis. Biopolymers. 2003 Oct;70(2):158-68 Authors: Hong M, Isailovic D, McMillan RA, Conticello VP The conformation of an elastin-mimetic recombinant protein, 39, is investigated using solid-state NMR spectroscopy. The protein is extensively labeled with 13C and 15N, and two-dimensional 13C-13C and 15N-13C correlation experiments were carried out to resolve and...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] Solid-state NMR studies of the mechanism of the opsin shift in the visual pigment rho
Solid-state NMR studies of the mechanism of the opsin shift in the visual pigment rhodopsin. Related Articles Solid-state NMR studies of the mechanism of the opsin shift in the visual pigment rhodopsin. Biochemistry. 1990 Sep 4;29(35):8158-64 Authors: Smith SO, Palings I, Miley ME, Courtin J, de Groot H, Lugtenburg J, Mathies RA, Griffin RG Solid-state 13C NMR spectra have been obtained of bovine rhodopsin and isorhodopsin regenerated with retinal selectively 13C labeled along the polyene chain. In rhodopsin, the chemical shifts for 13C-5,...
nmrlearner Journal club 0 08-21-2010 11:04 PM
Four-dimensional heteronuclear correlation experiments for chemical shift assignment of solid proteins
Four-dimensional heteronuclear correlation experiments for chemical shift assignment of solid proteins W. Trent Franks, Kathryn D. Kloepper, Benjamin J. Wylie and Chad M. Rienstra Journal of Biomolecular NMR; 2007; 39(2); pp 107 - 131 Abstract: Chemical shift assignment is the first step in all established protocols for structure determination of uniformly labeled proteins by NMR. The explosive growth in recent years of magic-angle spinning (MAS) solid-state NMR (SSNMR) applications is largely attributable to improved methods for backbone and side-chain chemical shift correlation...
stewart Journal club 0 08-05-2008 01:33 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:35 PM.


Map