BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > NMR educational videos
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 03-30-2011, 09:11 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default 4i. NMR spectroscopy - Coupling

4i. NMR spectroscopy - Coupling


4i. NMR spectroscopy - Coupling

Explanation of coupling with two neighbouring protons. Formation of a doublet and a triplet. The n+1 rule, quartets, quintets. Part of a set of videos giving an introductory course on proton NMR, aimed at around A-level or International Baccalaureate standard. Includes dicussion of integration, chemical shift and coupling.
From:jamesmungall
Views:7182
14ratings
Time:01:59More inEducation



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[U. of Ottawa NMR Facility Blog] Virtual Coupling
Virtual Coupling When the chemical shift difference between two J coupled nuclei is of the same order as the coupling constant, second order spectra are obtained. See this and this. One, often unrecognized, second order effect is virtual coupling which is often misinterpreted as first order weak coupling. In a three-spin system, virtual coupling occurs when the observed nucleus appears to be coupled to both of the other two nuclei even though it is only coupled to one of them. This arises in AA'X and ABX spin systems when X (the observed nucleus) is coupled to only one of the other two...
nmrlearner News from NMR blogs 0 08-12-2011 02:30 AM
4ii. NMR spectroscopy - Coupling
4ii. NMR spectroscopy - Coupling http://i.ytimg.com/vi/oLTLCECTRLg/default.jpg 4ii. NMR spectroscopy - Coupling Visit www.chemistry.jamesmungall.co.uk for notes on this topic. Thanks for watching! Explanation of how coupling occurs. Specific example of formation of a doublet due to coupling of 2 non-identical protons. Part of a set of videos giving an introductory course on proton NMR, aimed at around A-level or International Baccalaureate standard. Includes dicussion of integration, chemical shift and coupling. From:jamesmungall Views:6379...
nmrlearner NMR educational videos 0 08-01-2011 12:07 AM
Improved accuracy in measuring one-bond and two-bond 15N,13Cα coupling constants in proteins by double-inphase/antiphase (DIPAP) spectroscopy
Improved accuracy in measuring one-bond and two-bond 15N,13Cα coupling constants in proteins by double-inphase/antiphase (DIPAP) spectroscopy Abstract An extension to HN(CO-α/β-N,Cα-J)-TROSY (Permi and Annila in J Biomol NMR 16:221â??227, 2000) is proposed that permits the simultaneous determination of the four coupling constants 1 J Nâ?²(i)Cα(i), 2 J HN(i)Cα(i), 2 J Cα(iâ??1)Nâ?²(i), and 3 J Cα(iâ??1)HN(i) in 15N,13C-labeled proteins. Contrasting the original scheme, in which two separate subspectra exhibit the 2 J CαNâ?² coupling as inphase and antiphase splitting (IPAP), we...
nmrlearner Journal club 0 06-10-2011 01:41 AM
[NMR paper] Sensitivity enhanced NMR spectroscopy by quenching scalar coupling mediated relaxatio
Sensitivity enhanced NMR spectroscopy by quenching scalar coupling mediated relaxation: application to the direct observation of hydrogen bonds in 13C/15N-labeled proteins. Related Articles Sensitivity enhanced NMR spectroscopy by quenching scalar coupling mediated relaxation: application to the direct observation of hydrogen bonds in 13C/15N-labeled proteins. J Biomol NMR. 2000 May;17(1):55-61 Authors: Liu A, Hu W, Qamar S, Majumdar A In this paper, we demonstrate that the sensitivity of triple-resonance NMR experiments can be enhanced...
nmrlearner Journal club 0 11-18-2010 09:15 PM
[Question from NMRWiki Q&A forum] J-Coupling In Proton NMR
J-Coupling In Proton NMR I'm currently a college student taking Organic Chem and I've no idea how to figure out the J-coupling for H-NMR and neither my professor/TA's/book are being helpful. Does one apply the n+1 rule first to figure the number of peaks and then apply the various couplings to each peak? I understand that if a single H has two non-equivalent neighboring protons, you'd get a doublet of doublets instead of a triplet. But say, for example, how would I figure out the signal for the hydrogens attached to the terminal C of the double bond in 1-pentene ( the first carbon in,...
nmrlearner News from other NMR forums 0 08-22-2010 02:30 AM
Does NMR coupling happens between equivalent protons?
for example, in 1,4 dioxane, do the HNMR signals show up as singlets or triplets?
Justin T NMR Questions and Answers 2 05-28-2003 11:40 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:30 AM.


Map