BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from other NMR forums
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 07-03-2016, 08:48 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,731
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Relaxation rate of bulk (pure) water at high frequencies

Relaxation rate of bulk (pure) water at high frequencies

Hi all,

Does anyone know if NMR relaxation rates of bulk (pure) water has been measured experimentally at several hundreds of MHz frequencies (say, 500 MHz, though the higher the better) and at room temperature (say, 300K)?

I am aware of some very old publications that reported pure water T1 at 10s of MHz (e.g. Krynicki (1966), Physica 32:167) or at the lower end of the 100s of MHz regime. However, in recent years NMR instruments have been getting better and better and I believe today several hundreds of MHz experiments are indeed possible.

So I am wondering if anyone has published pure water (proton) relaxation rates at these high frequencies, in the upper end of the 10^8 Hz regime - and hopefully around room temperature. I spent hours searching the literature for this, but to no avail.

I would be very grateful if someone could point me to any such papers please.

Many thanks.



Check if somebody has answered this question on NMRWiki QA forum
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
An optimized method for 15 N R 1 relaxation rate measurements in non-deuterated proteins
An optimized method for 15 N R 1 relaxation rate measurements in non-deuterated proteins Abstract 15N longitudinal relaxation rates are extensively used for the characterization of protein dynamics; however, their accurate measurement is hindered by systematic errors. 15N CSA/1Hâ??15N dipolar cross-correlated relaxation (CC) and amide proton exchange saturation transfer from water protons are the two main sources of systematic errors in the determination of 15N R1 rates through 1Hâ??15N HSQC-based experiments. CC is usually...
nmrlearner Journal club 0 05-07-2015 12:59 AM
Measurement of rate constants for homodimer subunit exchange using double electronâ??electron resonance and paramagnetic relaxation enhancements
Measurement of rate constants for homodimer subunit exchange using double electronâ??electron resonance and paramagnetic relaxation enhancements Abstract Here, we report novel methods to measure rate constants for homodimer subunit exchange using double electronâ??electron resonance (DEER) electron paramagnetic resonance spectroscopy measurements and nuclear magnetic resonance spectroscopy based paramagnetic relaxation enhancement (PRE) measurements. The techniques were demonstrated using the homodimeric protein Dsy0195 from the strictly anaerobic bacterium Desulfitobacterium...
nmrlearner Journal club 0 11-29-2012 03:14 AM
A study on the influence of fast amide exchange on the accuracy of 15N relaxation rate constants
A study on the influence of fast amide exchange on the accuracy of 15N relaxation rate constants Abstract 15N relaxation rates of amide moieties provide insight both into global as well as local backbone dynamics of peptides and proteins. As the differences in the relaxation rates in general are small, their accurate determination is of prime importance. One potential source of error is fast amide exchange. It is well known that in its presence the effects of saturation transfer and H/D exchange may result in erroneous apparent relaxation rates R 1 and R 2. Here, the extent of...
nmrlearner Journal club 0 11-14-2012 08:07 AM
[Question from NMRWiki Q&A forum] bulk water relaxation dependence on temperature
bulk water relaxation dependence on temperature Is liquid water's relaxation rate strongly dependent on temperature, and does anyone have a link to a good online article with the dependency equation?Thanks! Check if somebody has answered this question on NMRWiki QA forum
nmrlearner News from other NMR forums 0 12-23-2011 10:21 AM
Chemical shift correlation at high MAS frequencies employing low-power symmetry-based mixing schemes
Chemical shift correlation at high MAS frequencies employing low-power symmetry-based mixing schemes Abstract An approach for conveniently implementing low-power CN n ν and RN n ν symmetry-based band-selective mixing sequences for generating homo- and heteronuclear chemical shift correlation NMR spectra of low γ nuclei in biological solids is demonstrated. Efficient magnetisation transfer characteristics are achieved by selecting appropriate symmetries requiring the application of basic RF elements of relatively long duration and numerically tailoring the RF field modulation profile...
nmrlearner Journal club 0 06-20-2011 03:31 PM
Sensitive 13Câ??13C correlation spectra of amyloid fibrils at very high spinning frequencies and magnetic fields
Sensitive 13Câ??13C correlation spectra of amyloid fibrils at very high spinning frequencies and magnetic fields Abstract Sensitive 2D solid-state 13Câ??13C correlation spectra of amyloid β fibrils have been recorded at very fast spinning frequencies and very high magnetic fields. It is demonstrated that PARIS-xy recoupling using moderate rf amplitudes can provide structural information by promoting efficient magnetization transfer even under such challenging experimental conditions. Furthermore, it has been shown both experimentally and by numerical simulations that the method is not...
nmrlearner Journal club 0 04-01-2011 09:23 AM
[Question from NMRWiki Q&A forum] What software can copy peak assignments for 2D T1 and T2 relaxation rate data analysi
What software can copy peak assignments for 2D T1 and T2 relaxation rate data analysis? Hello, I'm currently processing a large amount of T1 and T2 spectra in NMRDraw. I've been looking for a way to copy my peak assignments from one spectrum onto to the others so that I can quickly and accurately match height and volume values, but I've had little luck so far. Is it possible to manipulate the assignment tables to achieve this goal? NMRPipe and its associated applications are all very new to me at this point, so any information that may expand my general knowledge of the program or...
nmrlearner News from other NMR forums 0 08-22-2010 02:30 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:37 PM.


Map