BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from other NMR forums
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 03-15-2012, 06:10 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,786
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default How to perform non-selective spectroscopy with an imager?

How to perform non-selective spectroscopy with an imager?

Greetings NMR Wiki,

I am using a Bruker Biospec 24/30, (100 MHz 1H, DBX, Pv3, XWIN), equiped with a 36mm litz coil probe, to perform basic T1 & T2 measurements as well as DOSY. The sample is water. Images look great, basic spectroscopy has a systematic error.

My prior NMR experience is in chemistry on solid state systems using the chemagnetics CMX II type spectrometer. The Bruker instrument has been sending pulses for 6 months after I made a few repairs and was dormant (cold but not pulsing) for 5 years prior.

Is anyone out there using this class instrument for basic research?What are 'good' spectroscopic parameters to use for quantifying the relaxation dynamics of water in various substrates?How best to adjust the gain for the 90 & 180, and set the automatic adjustments to agree with manual adjustments? (non-selective, whole volume is 32mm x 54mm)How does one choose an appropriate gradient strength for spoiling or crushing?

Thank you for reading. Comments, links to online resources and/or references greatly appreciated.

-BK
Once bitten by the MR bug, there is no cure.

Check if somebody has answered this question on NMRWiki QA forum
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Frequency-selective heteronuclear dephasing and selective carbonyl labeling to deconvolute crowded spectra of membrane proteins by magic angle spinning NMR.
Frequency-selective heteronuclear dephasing and selective carbonyl labeling to deconvolute crowded spectra of membrane proteins by magic angle spinning NMR. Frequency-selective heteronuclear dephasing and selective carbonyl labeling to deconvolute crowded spectra of membrane proteins by magic angle spinning NMR. J Magn Reson. 2011 Mar 17; Authors: Traaseth NJ, Veglia G We present a new method that combines carbonyl-selective labeling with frequency-selective heteronuclear recoupling to resolve the spectral overlap of magic angle spinning (MAS) NMR...
nmrlearner Journal club 0 04-13-2011 11:57 PM
Frequency-Selective Heteronuclear Dephasing and Selective Carbonyl Labeling to Deconvolute Crowded Spectra of Membrane Proteins By Magic Angle Spinning NMR
Frequency-Selective Heteronuclear Dephasing and Selective Carbonyl Labeling to Deconvolute Crowded Spectra of Membrane Proteins By Magic Angle Spinning NMR Publication year: 2011 Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 17 March 2011</br> Nathaniel J., Traaseth , Gianluigi, Veglia</br> We present a new method that combines carbonyl-selective labeling with frequency-selective heteronuclear recoupling to resolve the spectral overlap of magic angle spinning (MAS) NMR spectra of membrane proteins in fluid lipid membranes with broad lines and...
nmrlearner Journal club 0 03-18-2011 06:43 AM
Selective 13C labeling of nucleotides for large RNA NMR spectroscopy using an E. coli strain disabled in the TCA cycle.
Selective 13C labeling of nucleotides for large RNA NMR spectroscopy using an E. coli strain disabled in the TCA cycle. Selective 13C labeling of nucleotides for large RNA NMR spectroscopy using an E. coli strain disabled in the TCA cycle. J Biomol NMR. 2010 Dec;48(4):179-92 Authors: Thakur CS, Sama JN, Jackson ME, Chen B, Dayie TK Escherichia coli (E. coli) is an ideal organism to tailor-make labeled nucleotides for biophysical studies of RNA. Recently, we showed that adding labeled formate enhanced the isotopic enrichment at protonated carbon...
nmrlearner Journal club 0 03-01-2011 12:14 PM
Selective 1H-13C NMR spectroscopy of methyl groups in residually protonated samples of large proteins
Selective 1H-13C NMR spectroscopy of methyl groups in residually protonated samples of large proteins Abstract Methyl 13CHD2 isotopomers of all methyl-containing amino-acids can be observed in residually protonated samples of large proteins obtained from -glucose/D2O-based bacterial media, with sensitivity sufficient for a number of NMR applications. Selective detection of some subsets of methyl groups (Alaβ, Thrγ2) is possible using simple â??out-and-backâ?? NMR methodology. Such selective methyl-detected â??out-and-backâ?? NMR experiments allow complete assignments of threonine γ2...
nmrlearner Journal club 0 01-09-2011 12:46 PM
[NMR paper] Site-selective screening by NMR spectroscopy with labeled amino acid pairs.
Site-selective screening by NMR spectroscopy with labeled amino acid pairs. Related Articles Site-selective screening by NMR spectroscopy with labeled amino acid pairs. J Am Chem Soc. 2002 Mar 20;124(11):2446-7 Authors: Weigelt J, van Dongen M, Uppenberg J, Schultz J, Wikström M A new method for site-selective screening by NMR is presented. The core of the new method is the dual amino acid sequence specific labeling technique. Amino acid X is labeled with (13)C and amino acid Y is labeled with (15)N. Provided only one XY pair occurs in the...
nmrlearner Journal club 0 11-24-2010 08:49 PM
Selective 13C labeling of nucleotides for large RNA NMR spectroscopy using an E. coli
Selective 13C labeling of nucleotides for large RNA NMR spectroscopy using an E. coli strain disabled in the TCA cycle Abstract Escherichia coli (E. coli) is an ideal organism to tailor-make labeled nucleotides for biophysical studies of RNA. Recently, we showed that adding labeled formate enhanced the isotopic enrichment at protonated carbon sites in nucleotides. In this paper, we show that growth of a mutant E. coli strain DL323 (lacking succinate and malate dehydrogenases) on 13C-2-glycerol and 13C-1,3-glycerol enables selective labeling at many useful sites for RNA NMR...
nmrlearner Journal club 0 11-09-2010 03:17 PM
Discovery of a potent and selective Bcl-2 inhibitor using SAR by NMR.
Discovery of a potent and selective Bcl-2 inhibitor using SAR by NMR. Related Articles Discovery of a potent and selective Bcl-2 inhibitor using SAR by NMR. Bioorg Med Chem Lett. 2010 Sep 15; Authors: Petros AM, Huth JR, Oost T, Park CM, Ding H, Wang X, Zhang H, Nimmer P, Mendoza R, Sun C, Mack J, Walter K, Dorwin S, Gramling E, Ladror U, Rosenberg SH, Elmore SW, Fesik SW, Hajduk PJ The Bcl-2 family of proteins plays a major role in the regulation of apoptosis, or programmed cell death. Overexpression of the anti-apoptotic members of this...
nmrlearner Journal club 0 09-29-2010 08:04 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:06 AM.


Map