BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from other NMR forums
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-12-2013, 03:33 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,808
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Capillary vs bulk solvent chemical shift difference

Capillary vs bulk solvent chemical shift difference

I have prepared a sealed DMSO-d6 capillary tube (3mmOD) to use as an internal reference for an undergraduate prac using Evans method.

When I run the capillary with DMSO-d6 only in the outer tube (ie no sample) there is a small difference in the shift of the residual DMSO solvent peak of the outer tube vs the capillary (~0.005ppm, 300MHz). The difference is not great enough to effect the result of the experiment but I would like to be able to explain the discrepancy to the students.

Due to the large number of samples it is impractical to run samples manually therefore we use an autosampler, but it is too expense to buy the number of coaxial inserts required, so I have used 3mmOD economy tubes (Wilmad) for the capillaries with Teflon tubing used as a spacer to hold the capillary vertical in the tube. While this works well it is not held as firmly as a coaxial insert would be.

Would the difference in shift be due to the capillary not being absolutely vertical/wobbling or because the capillary tube is lower quality glass than the outer tube (Wilmad 528-PP), ie more paramagnetic impurities, or some other phenomenon?

Any answers and/or easy to follow references explaining this observation would be greatly appreciated.



Check if somebody has answered this question on NMRWiki QA forum
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Identifying inter-residue resonances in crowded 2D (13)C- (13)C chemical shift correlation spectra of membrane proteins by solid-state MAS NMR difference spectroscopy.
Identifying inter-residue resonances in crowded 2D (13)C- (13)C chemical shift correlation spectra of membrane proteins by solid-state MAS NMR difference spectroscopy. Identifying inter-residue resonances in crowded 2D (13)C- (13)C chemical shift correlation spectra of membrane proteins by solid-state MAS NMR difference spectroscopy. J Biomol NMR. 2013 May 25; Authors: Miao Y, Cross TA, Fu R Abstract The feasibility of using difference spectroscopy, i.e. subtraction of two correlation spectra at different mixing times, for substantially...
nmrlearner Journal club 0 05-28-2013 06:36 PM
[NMR paper] Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information.
Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information. Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information. J Biomol NMR. 2013 Apr 28; Authors: Fritzsching KJ, Yang Y, Schmidt-Rohr K, Hong M Abstract We introduce a Python-based program that utilizes the large database of (13)C and (15)N chemical shifts in the Biological Magnetic...
nmrlearner Journal club 0 04-30-2013 10:21 PM
Lecture 9. Chemical Shift. 1H NMR Chemical Shifts.
Lecture 9. Chemical Shift. 1H NMR Chemical Shifts. http://i.ytimg.com/vi/7R7iM636WhY/default.jpg Lecture 9. Chemical Shift. 1H NMR Chemical Shifts. This video is part of a 28-lecture graduate-level course titled "Organic Spectroscopy" taught at UC Irvine by Professor James S. Nowick. The course covers in... From:UCITLTC Views:7351 http://gdata.youtube.com/static/images/icn_star_full_11x11.gif http://gdata.youtube.com/static/images/icn_star_full_11x11.gif http://gdata.youtube.com/static/images/icn_star_full_11x11.gif http://gdata.youtube.com/static/images/icn_star_full_11x11.gif...
nmrlearner NMR educational videos 0 03-22-2013 05:19 AM
[NMR paper] NightShift: NMR Shift Inference by General Hybrid Model Training - a Framework for NMR Chemical Shift Prediction.
NightShift: NMR Shift Inference by General Hybrid Model Training - a Framework for NMR Chemical Shift Prediction. Related Articles NightShift: NMR Shift Inference by General Hybrid Model Training - a Framework for NMR Chemical Shift Prediction. BMC Bioinformatics. 2013 Mar 16;14(1):98 Authors: Dehof AK, Loew S, Lenhof HP, Hildebrandt A Abstract NMR chemical shift prediction plays an important role in various applications in computational biology. Among others, structure determination, structure optimization, and the scoring of docking...
nmrlearner Journal club 0 03-19-2013 01:22 PM
[NMR paper] Transmembrane 19F NMR chemical shift difference of fluorinated solutes in liposomes,
Transmembrane 19F NMR chemical shift difference of fluorinated solutes in liposomes, erythrocytes and erythrocyte ghosts. Related Articles Transmembrane 19F NMR chemical shift difference of fluorinated solutes in liposomes, erythrocytes and erythrocyte ghosts. NMR Biomed. 1993 Mar-Apr;6(2):136-43 Authors: Xu AS, Waldeck AR, Kuchel PW In erythrocytes suspended in isotonic medium, a number of fluorinated anions showed well resolved 19F NMR resonances from the solute populations in the intra- and extracellular compartments; the intracellular...
nmrlearner Journal club 0 08-21-2010 11:53 PM
NMR question about chemical shifts and frequency difference between two lines?
The 13C chemical shifts for the carbonyl and methyl resonances of acetone are 206.68 and29.92 ppm, respectively (referenced to TMS at 0 ppm).a) If this spectrum was run on a Varian INOVA 400 NMR spectrometer, what is the frequencydifference in Hz between the two lines? (Assume <ref = 100.0650368 MHz) (2 points)b) What is the difference in magnetic field experienced by the carbonyl carbon vs. the methylcarbons. (4 points)thank you Allision!!so then i haver a difference of 17,717 Hz.for b) now I do not have any textbooks for this course but i did go to the library and picked up 4 differnet...
rumberg NMR Questions and Answers 1 05-20-2005 02:37 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:21 PM.


Map