BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 06-26-2015, 09:55 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Up to 100% Improvement in Dynamic Nuclear Polarization Solid-State NMR Sensitivity Enhancement of Polymers by Removing Oxygen

From The DNP-NMR Blog:

Up to 100% Improvement in Dynamic Nuclear Polarization Solid-State NMR Sensitivity Enhancement of Polymers by Removing Oxygen


Le, D., et al., Up to 100% Improvement in Dynamic Nuclear Polarization Solid-State NMR Sensitivity Enhancement of Polymers by Removing Oxygen. Macromol Rapid Commun, 2015: p. n/a-n/a.


http://www.ncbi.nlm.nih.gov/pubmed/26010134


High-field dynamic nuclear polarization (DNP) has emerged as a powerful technique for improving the sensitivity of solid-state NMR (SSNMR), yielding significant sensitivity enhancements for a variety of samples, including polymers. Overall, depending upon the type of polymer, the molecular weight, and the DNP sample preparation method, sensitivity enhancements between 5 and 40 have been reported. These promising enhancements remain, however, far from the theoretical maximum (>1000). Crucial to the success of DNP SSNMR is the DNP signal enhancement (epsilonDNP ), which is the ratio of the NMR signal intensities with and without DNP. It is shown here that, for polymers exhibiting high affinity toward molecular oxygen (e.g., polystyrene), removing part of the absorbed (paramagnetic) oxygen from the solid-state samples available as powders (instead of dissolved or dispersed in a solvent) increases proton nuclear relaxation times and epsilonDNP , hereby providing up to a two-fold sensitivity increase (i.e., a four-fold reduction in experimental time).


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Optimization of cross-polarization at low radiofrequency fields for sensitivity enhancement in solid-state NMR of membrane proteins reconstituted in magnetically aligned bicelles
Optimization of cross-polarization at low radiofrequency fields for sensitivity enhancement in solid-state NMR of membrane proteins reconstituted in magnetically aligned bicelles Publication date: Available online 28 April 2015 Source:Journal of Magnetic Resonance</br> Author(s): Sophie N. Koroloff , Alexander A. Nevzorov</br> Solid-state NMR (ssNMR) of oriented membrane proteins (MPs) is capable of providing structural and dynamic information at nearly physiological conditions. However, NMR experiments performed on oriented membrane proteins generally suffer from...
nmrlearner Journal club 0 04-28-2015 12:40 PM
[NMR paper] Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization.
Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization. J Am Chem Soc. 2013 Apr 3;135(13):5105-10 Authors: Takahashi H, Ayala I, Bardet M, De Paëpe G, Simorre JP, Hediger S Abstract ...
nmrlearner Journal club 0 10-14-2014 09:48 PM
Optimizing sample preparation methods for dynamic nuclear polarization solid-state NMR of synthetic polymers
From The DNP-NMR Blog: Optimizing sample preparation methods for dynamic nuclear polarization solid-state NMR of synthetic polymers Le, D., et al., Optimizing sample preparation methods for dynamic nuclear polarization solid-state NMR of synthetic polymers. Macromolecules, 2014: p. 140613123939001. http://pubs.acs.org/doi/abs/10.1021/ma500788n
nmrlearner News from NMR blogs 0 06-18-2014 06:09 PM
Improved Structural Elucidation of Synthetic Polymers by Dynamic Nuclear Polarization Solid-State NMR Spectroscopy
From The DNP-NMR Blog: Improved Structural Elucidation of Synthetic Polymers by Dynamic Nuclear Polarization Solid-State NMR Spectroscopy Ouari, O., et al., Improved Structural Elucidation of Synthetic Polymers by Dynamic Nuclear Polarization Solid-State NMR Spectroscopy. ACS Macro Letters, 2013. 2(8): p. 715-719. http://dx.doi.org/10.1021/mz4003003
nmrlearner News from NMR blogs 0 09-19-2013 02:19 PM
Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials
From The DNP-NMR Blog: Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials Kobayashi, T., et al., Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials. Phys Chem Chem Phys, 2013. 15(15): p. 5553-62. http://www.ncbi.nlm.nih.gov/pubmed/23459985
nmrlearner News from NMR blogs 0 04-17-2013 08:15 PM
Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials
From the The DNP-NMR Blog: Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials Kobayashi, T., et al., Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials. Phys Chem Chem Phys, 2013. 15(15): p. 5553-62. http://www.ncbi.nlm.nih.gov/pubmed/23459985
nmrlearner News from NMR blogs 0 04-15-2013 08:52 AM
Solid-State NMR on Bacterial Cells: Selective Cell Wall Signal Enhancement and Resolution Improvement using Dynamic Nuclear Polarization
From the The DNP-NMR Blog: Solid-State NMR on Bacterial Cells: Selective Cell Wall Signal Enhancement and Resolution Improvement using Dynamic Nuclear Polarization Takahashi, H., et al., Solid-State NMR on Bacterial Cells: Selective Cell Wall Signal Enhancement and Resolution Improvement using Dynamic Nuclear Polarization. J. Am. Chem. Soc., 2013. http://dx.doi.org/10.1021/ja312501d Dynamic nuclear polarization (DNP) enhanced solid-state nuclear magnetic resonance (NMR) has recently emerged as a powerful technique for the study of material surfaces. In this study, we demonstrate...
nmrlearner News from NMR blogs 0 04-15-2013 08:52 AM
Solid-State NMR on BacterialCells: Selective CellWall Signal Enhancement and Resolution Improvement using Dynamic NuclearPolarization
Solid-State NMR on BacterialCells: Selective CellWall Signal Enhancement and Resolution Improvement using Dynamic NuclearPolarization Hiroki Takahashi, Isabel Ayala, Michel Bardet, Gae?l De Pae?pe, Jean-Pierre Simorre and Sabine Hediger http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja312501d/aop/images/medium/ja-2012-12501d_0007.gif Journal of the American Chemical Society DOI: 10.1021/ja312501d http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/XiBc4chtpzo
nmrlearner Journal club 0 02-27-2013 06:45 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:18 AM.


Map