BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 05-16-2016, 05:53 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Ultra-low temperature MAS-DNP #DNPNMR

From The DNP-NMR Blog:

Ultra-low temperature MAS-DNP #DNPNMR


Lee, D., et al., Ultra-low temperature MAS-DNP. J. Magn. Reson., 2016. 264: p. 116-124.


http://www.sciencedirect.com/science...90780715003092


Since the infancy of NMR spectroscopy, sensitivity and resolution have been the limiting factors of the technique. Regular essential developments on this front have led to the widely applicable, versatile, and powerful spectroscopy that we know today. However, the Holy Grail of ultimate sensitivity and resolution is not yet reached, and technical improvements are still ongoing. Hence, high-field dynamic nuclear polarization (DNP) making use of high-frequency, high-power microwave irradiation of electron spins has become very promising in combination with magic angle sample spinning (MAS) solid-state NMR experiments. This is because it leads to a transfer of the much larger polarization of these electron spins under suitable irradiation to surrounding nuclei, greatly increasing NMR sensitivity. Currently, this boom in MAS-DNP is mainly performed at minimum sample temperatures of about 100 K, using cold nitrogen gas to pneumatically spin and cool the sample. This Perspective deals with the desire to improve further the sensitivity and resolution by providing “ultra”-low temperatures for MAS-DNP, using cryogenic helium gas. Different designs on how this technological challenge has been overcome are described. It is shown that stable and fast spinning can be attained for sample temperatures down to 30 K using a large cryostat developed in our laboratory. Using this cryostat to cool a closed-loop of helium gas brings the additional advantage of sample spinning frequencies that can greatly surpass those achievable with nitrogen gas, due to the differing fluidic properties of these two gases. It is shown that using ultra-low temperatures for MAS-DNP results in substantial experimental sensitivity enhancements and according time-savings. Access to this temperature range is demonstrated to be both viable and highly pertinent.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR] PhD fellowship #DNPNMR
From The DNP-NMR Blog: PhD fellowship #DNPNMR From the Ampere Magnetic Resonance List
nmrlearner News from NMR blogs 0 05-02-2016 11:33 AM
Meet Bridge12 at ENC in Pittsburgh #DNPNMR
From The DNP-NMR Blog: Meet Bridge12 at ENC in Pittsburgh #DNPNMR Meet Bridge12 at this year's ENC in Pittsburgh from April 10th - 15th. This will be the first time that Bridge12 has a small booth, showcasing some of our products. Thorsten Maly will also give a talk in the DNP Methods & Applications session on Thursday morning from 10:45-12:30pm in Grand 2. He will be presenting our shoebox-sized 263 GHz EPR spectrometer for DNP-NMR. Hope to see you at ENC and please stop by at our booth to discuss your ideas for DNP-NMR spectroscopy. Our goal is to help you focusing on your...
nmrlearner News from NMR blogs 0 04-09-2016 04:22 PM
DNP 2016 Summer School organized by the EPFL #DNPNMR
From The DNP-NMR Blog: DNP 2016 Summer School organized by the EPFL #DNPNMR Dear DNP Community
nmrlearner News from NMR blogs 0 03-30-2016 08:39 PM
Top 3 Articles for #DNPNMR in December 2015
From The DNP-NMR Blog: Top 3 Articles for #DNPNMR in December 2015 These are the top three most viewed blog posts for December 2015 from our DNP blog: Metabolic imaging of patients with prostate cancer using hyperpolarized pyruvate PRESTO polarization transfer to quadrupolar nuclei: implications for dynamic nuclear polarization Rapid-melt Dynamic Nuclear Polarization
nmrlearner News from NMR blogs 0 01-07-2016 08:36 AM
[NMR paper] Operation of a 400MHz NMR magnet using a (RE:Rare Earth)Ba2Cu3O7-x high-temperature superconducting coil: Towards an ultra-compact super-high field NMR spectrometer operated beyond 1GHz.
Operation of a 400MHz NMR magnet using a (RE:Rare Earth)Ba2Cu3O7-x high-temperature superconducting coil: Towards an ultra-compact super-high field NMR spectrometer operated beyond 1GHz. Operation of a 400MHz NMR magnet using a (RE:Rare Earth)Ba2Cu3O7-x high-temperature superconducting coil: Towards an ultra-compact super-high field NMR spectrometer operated beyond 1GHz. J Magn Reson. 2014 Oct 18;249C:38-48 Authors: Yanagisawa Y, Piao R, Iguchi S, Nakagome H, Takao T, Kominato K, Hamada M, Matsumoto S, Suematsu H, Jin X, Takahashi M, Yamazaki...
nmrlearner Journal club 0 12-03-2014 04:05 PM
[NMR paper] Operation of a 400MHz NMR magnet using a (RE:Rare Earth)Ba2Cu3O7-x high-temperature superconducting coil: Towards an ultra-compact super-high field NMR spectrometer operated beyond 1GHz
Operation of a 400MHz NMR magnet using a (RE:Rare Earth)Ba2Cu3O7-x high-temperature superconducting coil: Towards an ultra-compact super-high field NMR spectrometer operated beyond 1GHz Publication date: December 2014 Source:Journal of Magnetic Resonance, Volume 249</br> Author(s): Y. Yanagisawa , R. Piao , S. Iguchi , H. Nakagome , T. Takao , K. Kominato , M. Hamada , S. Matsumoto , H. Suematsu , X. Jin , M. Takahashi , T. Yamazaki , H. Maeda</br> High-temperature superconductors (HTS) are the key technology to achieve super-high magnetic field nuclear...
nmrlearner Journal club 0 11-14-2014 08:33 AM
Proton polarization in photo-excited aromatic molecule at room temperature enhanced by intense optical source and temperature control
From The DNP-NMR Blog: Proton polarization in photo-excited aromatic molecule at room temperature enhanced by intense optical source and temperature control Sakaguchi, S., et al., Proton polarization in photo-excited aromatic molecule at room temperature enhanced by intense optical source and temperature control. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013. 317(0): p. 679-684. http://www.sciencedirect.com/science/article/pii/S0168583X13008872
nmrlearner News from NMR blogs 0 01-23-2014 01:37 AM
Proton polarization in photo-excited aromatic molecule at room temperature enhanced by intense optical source and temperature control
From The DNP-NMR Blog: Proton polarization in photo-excited aromatic molecule at room temperature enhanced by intense optical source and temperature control Sakaguchi, S., et al., Proton polarization in photo-excited aromatic molecule at room temperature enhanced by intense optical source and temperature control. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013(0). http://www.sciencedirect.com/science/article/pii/S0168583X13008872
nmrlearner News from NMR blogs 0 11-21-2013 01:14 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 12:01 AM.


Map