We present results of a pulsed dynamic nuclear polarization (DNP) study at 0.35 T (9.7 GHz/14.7 MHz for electron/(1)H Larmor frequency) using a lab frame-rotating frame cross polarization experiment that employs electron spin locking fields that match the (1)H nuclear Larmor frequency, the so called NOVEL (nuclear orientation via electron spin locking) condition. We apply the method to a series of DNP samples including a single crystal of diphenyl nitroxide (DPNO) doped benzophenone (BzP), 1,3-bisdiphenylene-2-phenylallyl (BDPA) doped polystyrene (PS), and sulfonated-BDPA (SA-BDPA) doped glycerol/water glassy matrices. The optimal Hartman-Hahn matching condition is achieved when the nutation frequency of the electron matches the Larmor frequency of the proton, omega1S = omega0I, together with possible higher order matching conditions at lower efficiencies. The magnetization transfer from electron to protons occurs on the time scale of approximately 100 ns, consistent with the electron-proton couplings on the order of 1-10 MHz in these samples. In a fully protonated single crystal DPNO/BzP, at 270 K, we obtained a maximum signal enhancement of epsilon = 165 and the corresponding gain in sensitivity of epsilonT1/TB (1/2)=230 due to the reduction in the buildup time under DNP. In a sample of partially deuterated PS doped with BDPA, we obtained an enhancement of 323 which is a factor of approximately 3.2 higher compared to the protonated version of the same sample and accounts for 49% of the theoretical limit. For the SA-BDPA doped glycerol/water glassy matrix at 80 K, the sample condition used in most applications of DNP in nuclear magnetic resonance, we also observed a significant enhancement. Our findings demonstrate that pulsed DNP via the NOVEL sequence is highly efficient and can potentially surpass continuous wave DNP mechanisms such as the solid effect and cross effect which scale unfavorably with increasing magnetic field. Furthermore, pulsed DNP is also a promising avenue for DNP at high temperature.
[NMR paper] Quantitative analysis of location- and sequence-dependent deamination by APOBEC3G using real-time NMR spectroscopy.
Quantitative analysis of location- and sequence-dependent deamination by APOBEC3G using real-time NMR spectroscopy.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles Quantitative analysis of location- and sequence-dependent deamination by APOBEC3G using real-time NMR spectroscopy.
Angew Chem Int Ed Engl. 2014 Feb 24;53(9):2349-52
Authors: Furukawa A, Sugase K, Morishita R, Nagata T, Kodaki T, Takaori-Kondo A, Ryo A, Katahira M
...
nmrlearner
Journal club
0
10-24-2014 07:18 PM
[Question from NMRWiki Q&A forum] How to performing acquisition during all time multi pulse sequence - Bruker ?
How to performing acquisition during all time multi pulse sequence - Bruker ?
Hi all, I have a small question on how to aquired a complete signal in BRUKER AVIII.I want to create a multi pulse sequence (1D), where I want to aquire the signal (sequentially) do not adding or replacing the data before each pulse.
||__________||_________||__________||___________ ...
tp tp tp tp ...Performing Aquisition all time.................
|| - pulse
nmrlearner
News from other NMR forums
0
10-10-2013 09:27 AM
[NMR paper] Conformational changes in a photosensory LOV domain monitored by time-resolved NMR sp
Conformational changes in a photosensory LOV domain monitored by time-resolved NMR spectroscopy.
Related Articles Conformational changes in a photosensory LOV domain monitored by time-resolved NMR spectroscopy.
J Am Chem Soc. 2004 Mar 24;126(11):3390-1
Authors: Harper SM, Neil LC, Day IJ, Hore PJ, Gardner KH
Phototropins are light-activated kinases from plants that utilize light-oxygen-voltage (LOV) domains as blue light photosensors. Illumination of these domains leads to the formation of a covalent linkage between the protein and an...
nmrlearner
Journal club
0
11-24-2010 09:25 PM
[NMR paper] Real-time and equilibrium (19)F-NMR studies reveal the role of domain-domain interact
Real-time and equilibrium (19)F-NMR studies reveal the role of domain-domain interactions in the folding of the chaperone PapD.
Related Articles Real-time and equilibrium (19)F-NMR studies reveal the role of domain-domain interactions in the folding of the chaperone PapD.
Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):709-14
Authors: Bann JG, Pinkner J, Hultgren SJ, Frieden C
PapD is a periplasmic chaperone essential for P pilus formation in pyelonephritic strains of E. coli. It is composed of two domains, each of which contains a tryptophan...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
[Stan NMR blog] Compact permanent magnets for time-domain NMR
Compact permanent magnets for time-domain NMR
Compact MR-quality permanent magnets available off the shelf up to 0.5 T
Source: Stan blog library
nmrlearner
News from NMR blogs
0
11-23-2010 07:10 AM
[NMR paper] Sequence-specific 1H-NMR assignments and secondary structure of the lipoyl domain of
Sequence-specific 1H-NMR assignments and secondary structure of the lipoyl domain of the Bacillus stearothermophilus pyruvate dehydrogenase multienzyme complex.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles Sequence-specific 1H-NMR assignments and secondary structure of the lipoyl domain of the Bacillus stearothermophilus pyruvate dehydrogenase multienzyme complex.
Eur J Biochem. 1991 Oct 1;201(1):203-9
Authors: Dardel F, Laue ED, Perham RN...
nmrlearner
Journal club
0
08-21-2010 11:12 PM
[NMR paper] Sequence-specific 1H-NMR assignments and secondary structure of the lipoyl domain of
Sequence-specific 1H-NMR assignments and secondary structure of the lipoyl domain of the Bacillus stearothermophilus pyruvate dehydrogenase multienzyme complex.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles Sequence-specific 1H-NMR assignments and secondary structure of the lipoyl domain of the Bacillus stearothermophilus pyruvate dehydrogenase multienzyme complex.
Eur J Biochem. 1991 Oct 1;201(1):203-9
Authors: Dardel F, Laue ED, Perham RN...
nmrlearner
Journal club
0
08-21-2010 11:12 PM
[Stan NMR blog] Compact permanent magnets for time-domain NMR
Compact permanent magnets for time-domain NMR
Compact MR-quality permanent magnets available off the shelf up to 0.5 T
More...