A tailored multi-frequency EPR approach to accurately determine the magnetic resonance parameters of dynamic nuclear polarization agents: application to AMUPol #DNPNMR
A tailored multi-frequency EPR approach to accurately determine the magnetic resonance parameters of dynamic nuclear polarization agents: application to AMUPol #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
This is a very nice article illustrating the importance of understanding the EPR parameters of a polarizing agent used in DNP-NMR spectroscopy. Here the 9, 95 and 275 GHz EPR spectroscopy is used to characterize AMUPol and predict its performance in high-field DNP.
Gast, P., et al., A tailored multi-frequency EPR approach to accurately determine the magnetic resonance parameters of dynamic nuclear polarization agents: application to AMUPol. Phys. Chem. Chem. Phys., 2017. 19(5): p. 3777-3781.
To understand the dynamic nuclear polarization (DNP) enhancements of biradical polarizing agents, the magnetic resonance parameters need to be known. We describe a tailored EPR approach to accurately determine electron spin-spin coupling parameters using a combination of standard (9 GHz), high (95 GHz) and ultra-high (275 GHz) frequency EPR. Comparing liquid- and frozen-solution continuous-wave EPR spectra provides accurate anisotropic dipolar interaction D and isotropic exchange interaction J parameters of the DNP biradical AMUPol. We found that D was larger by as much as 30% compared to earlier estimates, and that J is 43 MHz, whereas before it was considered to be negligible. With the refined data, quantum mechanical calculations confirm that an increase in dipolar electron-electron couplings leads to higher cross-effect DNP efficiencies. Moreover, the DNP calculations qualitatively reproduce the difference of TOTAPOL and AMUPol DNP efficiencies found experimentally and suggest that AMUPol is particularly effective in improving the DNP efficiency at magnetic fields higher than 500 MHz. The multi-frequency EPR approach will aid in predicting the optimal structures for future DNP agents.
p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica}
Expeditious dissolution dynamic nuclear polarization without glassing agents
From The DNP-NMR Blog:
Expeditious dissolution dynamic nuclear polarization without glassing agents
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Lama, B., et al., Expeditious dissolution dynamic nuclear polarization without glassing agents. NMR Biomed, 2016. 29(3): p. 226-31.
https://www.ncbi.nlm.nih.gov/pubmed/26915792
nmrlearner
News from NMR blogs
0
01-04-2017 07:59 PM
Dissolution dynamic nuclear polarization–enhanced magnetic resonance spectroscopy and imaging: Chemical and biochemical reactions in nonequilibrium conditions #DNPNMR
From The DNP-NMR Blog:
Dissolution dynamic nuclear polarization–enhanced magnetic resonance spectroscopy and imaging: Chemical and biochemical reactions in nonequilibrium conditions #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Lee, Y., Dissolution dynamic nuclear polarization–enhanced magnetic resonance spectroscopy and imaging: Chemical and biochemical reactions in nonequilibrium conditions. Applied Spectroscopy Reviews, 2015. 51(3): p. 210-226.
https://doi.org/10.1080/05704928.2015.1116078
nmrlearner
News from NMR blogs
0
12-30-2016 04:53 PM
Dynamic Nuclear Polarization and Other Magnetic Ideas at EPFL #DNPNMR
From The DNP-NMR Blog:
Dynamic Nuclear Polarization and Other Magnetic Ideas at EPFL #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Bornet, A., et al., Dynamic Nuclear Polarization and Other Magnetic Ideas at EPFL. CHIMIA International Journal for Chemistry, 2012. 66(10): p. 734-740.
https://doi.org/10.2533/chimia.2012.734
nmrlearner
News from NMR blogs
0
12-21-2016 11:43 PM
Correction: Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids #DNPNMR
From The DNP-NMR Blog:
Correction: Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Corzilius, B., Correction: Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids. Phys. Chem. Chem. Phys., 2016. 18(42): p. 29643-29643.
http://dx.doi.org/10.1039/C6CP90249A
nmrlearner
News from NMR blogs
0
12-17-2016 07:18 AM
Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids #DNPNMR
From The DNP-NMR Blog:
Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Corzilius, B., Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids. Phys. Chem. Chem. Phys., 2016. 18(39): p. 27190-27204.
http://dx.doi.org/10.1039/C6CP04621E
nmrlearner
News from NMR blogs
0
11-21-2016 11:02 PM
Gd(iii) and Mn(ii) complexes for dynamic nuclear polarization: small molecular chelate polarizing agents and applications with site-directed spin labeling of proteins #DNPNMR
From The DNP-NMR Blog:
Gd(iii) and Mn(ii) complexes for dynamic nuclear polarization: small molecular chelate polarizing agents and applications with site-directed spin labeling of proteins #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Kaushik, M., et al., Gd(iii) and Mn(ii) complexes for dynamic nuclear polarization: small molecular chelate polarizing agents and applications with site-directed spin labeling of proteins. Phys Chem Chem Phys, 2016. 18(39): p. 27205-27218.
https://www.ncbi.nlm.nih.gov/pubmed/27545112
nmrlearner
News from NMR blogs
0
11-19-2016 08:35 PM
Highly Efficient, Water-Soluble Polarizing Agents for Dynamic Nuclear Polarization at High Frequency
From The DNP-NMR Blog:
Highly Efficient, Water-Soluble Polarizing Agents for Dynamic Nuclear Polarization at High Frequency
Sauvee, C., et al., Highly Efficient, Water-Soluble Polarizing Agents for Dynamic Nuclear Polarization at High Frequency. Angew Chem Int Ed Engl, 2013. 52(41): p. 10858-10861.
http://www.ncbi.nlm.nih.gov/pubmed/23956072
nmrlearner
News from NMR blogs
0
01-24-2014 11:26 PM
Highly Efficient, Water-Soluble Polarizing Agents for Dynamic Nuclear Polarization at High Frequency
From The DNP-NMR Blog:
Highly Efficient, Water-Soluble Polarizing Agents for Dynamic Nuclear Polarization at High Frequency
Sauvee, C., et al., Highly Efficient, Water-Soluble Polarizing Agents for Dynamic Nuclear Polarization at High Frequency. Angew Chem Int Ed Engl, 2013. 52(41): p. 10858-10861.
http://www.ncbi.nlm.nih.gov/pubmed/23956072