BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 04-02-2018, 03:36 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Studies to enhance the hyperpolarization level in PHIP-SAH-produced C13-pyruvate #DNPNMR

From The DNP-NMR Blog:

Studies to enhance the hyperpolarization level in PHIP-SAH-produced C13-pyruvate #DNPNMR

Cavallari, E., et al., Studies to enhance the hyperpolarization level in PHIP-SAH-produced C13-pyruvate. J Magn Reson, 2018. 289: p. 12-17.


https://www.ncbi.nlm.nih.gov/pubmed/29448129


The use of [1-(13)C]pyruvate, hyperpolarized by dissolution-Dynamic Nuclear Polarization (d-DNP), in in vivo metabolic studies has developed quickly, thanks to the imaging probe's diagnostic relevance. Nevertheless, the cost of a d-DNP polarizer is quite high and the speed of hyperpolarization process is relatively slow, meaning that its use is limited to few research laboratories. ParaHydrogen Induced Polarization Side Arm Hydrogenation (PHIP-SAH) (Reineri et al., 2015) is a cost effective and easy-to-handle method that produces (13)C-MR hyperpolarization in [1-(13)C]pyruvate and other metabolites. This work aims to identify the main determinants of the hyperpolarization levels observed in C13-pyruvate using this method. By dissecting the various steps of the PHIP-SAH procedure, it has been possible to assess the role of several experimental parameters whose optimization must be pursued if this method is to be made suitable for future translational steps. The search for possible solutions has led to improvements in the polarization of sodium [1-(13)C]pyruvate from 2% to 5%. Moreover, these results suggest that observed polarization levels could be increased considerably by an automatized procedure which would reduce the time required for the work-up passages that are currently carried out manually. The results reported herein mean that the attainment of polarization levels suitable for the metabolic imaging applications of these hyperpolarized substrates show significant promise.


p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica}

Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Construction and 13 C hyperpolarization efficiency of a 180 GHz dissolution dynamic nuclear polarization system #DNPNMR
From The DNP-NMR Blog: Construction and 13 C hyperpolarization efficiency of a 180 GHz dissolution dynamic nuclear polarization system #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Kiswandhi, A., et al., Construction and 13 C hyperpolarization efficiency of a 180 GHz dissolution dynamic nuclear polarization system. Magn Reson Chem, 2017. 55(9): p. 828-836. https://www.ncbi.nlm.nih.gov/pubmed/28407455
nmrlearner News from NMR blogs 0 10-14-2017 02:04 AM
Hyperpolarization of Frozen Hydrocarbon Gases by Dynamic Nuclear Polarization at 1.2 K #DNPNMR
From The DNP-NMR Blog: Hyperpolarization of Frozen Hydrocarbon Gases by Dynamic Nuclear Polarization at 1.2 K #DNPNMR Vuichoud, B., et al., Hyperpolarization of Frozen Hydrocarbon Gases by Dynamic Nuclear Polarization at 1.2 K. J Phys Chem Lett, 2016. 7(16): p. 3235-9. https://www.ncbi.nlm.nih.gov/pubmed/27483034
nmrlearner News from NMR blogs 0 09-22-2016 10:41 PM
[NMR] Two PhD positions in Solid State NMR in Nijmegen #DNPNMR #HYPERPOLARIZATION
From The DNP-NMR Blog: Two PhD positions in Solid State NMR in Nijmegen #DNPNMR #HYPERPOLARIZATION From the Ampere Magnetic Resonance List
nmrlearner News from NMR blogs 0 06-25-2016 02:57 AM
Nuclear hyperpolarization comes of age #DNPNMR
From The DNP-NMR Blog: Nuclear hyperpolarization comes of age #DNPNMR Jeschke, G. and L. Frydman, Nuclear hyperpolarization comes of age. J Magn Reson, 2016. 264: p. 1-2. http://www.ncbi.nlm.nih.gov/pubmed/26920824
nmrlearner News from NMR blogs 0 05-20-2016 03:04 PM
The role of level anti-crossings in nuclear spin hyperpolarization
The role of level anti-crossings in nuclear spin hyperpolarization Publication date: August 2014 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 81</br> Author(s): Konstantin L. Ivanov , Andrey N. Pravdivtsev , Alexandra V. Yurkovskaya , Hans-Martin Vieth , Robert Kaptein</br> Nuclear spin hyperpolarization is an important resource for increasing the sensitivity of NMR spectroscopy and MRI. Signal enhancements can be as large as 3–4 orders of magnitude. In hyperpolarization experiments, it is often desirable to transfer the initial...
nmrlearner Journal club 0 08-24-2014 04:05 PM
Exploiting level anti-crossings (LACs) in the rotating frame for transferring spin hyperpolarization
From The DNP-NMR Blog: Exploiting level anti-crossings (LACs) in the rotating frame for transferring spin hyperpolarization Pravdivtsev, A.N., et al., Exploiting level anti-crossings (LACs) in the rotating frame for transferring spin hyperpolarization. Phys Chem Chem Phys, 2014. 16(35): p. 18707-19. http://www.ncbi.nlm.nih.gov/pubmed/24870026
nmrlearner News from NMR blogs 0 08-20-2014 02:06 PM
The role of level anti-crossings in nuclear spin hyperpolarization
From The DNP-NMR Blog: The role of level anti-crossings in nuclear spin hyperpolarization Ivanov, K.L., et al., The role of level anti-crossings in nuclear spin hyperpolarization. Prog. NMR. Spec., 2014. 81(0): p. 1-36. http://www.sciencedirect.com/science/article/pii/S0079656514000454
nmrlearner News from NMR blogs 0 08-18-2014 10:14 PM
Level Anti-Crossings are a Key Factor for Understanding para-Hydrogen-Induced Hyperpolarization in SABRE Experiments
From The DNP-NMR Blog: Level Anti-Crossings are a Key Factor for Understanding para-Hydrogen-Induced Hyperpolarization in SABRE Experiments Pravdivtsev, A.N., et al., Level Anti-Crossings are a Key Factor for Understanding para-Hydrogen-Induced Hyperpolarization in SABRE Experiments. ChemPhysChem, 2013. 14(14): p. 3327-3331. http://www.ncbi.nlm.nih.gov/pubmed/23959909
nmrlearner News from NMR blogs 0 04-16-2014 11:09 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:32 PM.


Map