In vivo MRSI is an important imaging modality that has been shown in numerous research studies to give biologically relevant information for assessing the underlying mechanisms of disease and for monitoring response to therapy. The increasing availability of high field scanners and multichannel radiofrequency coils has provided the opportunity to acquire in vivo data with significant improvements in sensitivity and signal to noise ratio. These capabilities may be used to shorten acquisition time and provide increased coverage. The ability to acquire rapid, volumetric MRSI data is critical for examining heterogeneity in metabolic profiles and for relating serial changes in metabolism within the same individual during the course of the disease. In this review we discuss the implementation of strategies that use alternative k-space sampling trajectories and parallel imaging methods in order to speed up data acquisition. The impact of such methods is demonstrated using three recent examples of how these methods have been applied. These are to the acquisition of robust 3D 1H MRSI data within 5–10 min at a field strength of 3 T, to obtaining higher sensitivity for 1H MRSI at 7 T and to using ultrafast volumetric and dynamic 13C MRSI for monitoring the changes in signals that occur following the injection of hyperpolarized 13C agents.
In vivo oxygen-17 NMR for imaging brain oxygen metabolism at high field
In vivo oxygen-17 NMR for imaging brain oxygen metabolism at high field
Publication year: 2011
Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 59, Issue 4</br>
Xiao-Hong Zhu, Wei Chen</br>
</br>
</br></br>
nmrlearner
Journal club
0
03-09-2012 09:16 AM
In vivo oxygen-17 NMR for imaging brain oxygen metabolism at high field
In vivo oxygen-17 NMR for imaging brain oxygen metabolism at high field
Publication year: 2011
Source: Progress in Nuclear Magnetic Resonance Spectroscopy, In Press, Accepted Manuscript, Available online 23 April 2011</br>
Xiao-Hong, Zhu , Wei, Chen</br>
*Highlights:*? This article reviews the developments of in vivo 17O NMR imaging in brain research. ? In vivo 17O NMR imaging has improved significantly at high/ultrahigh field. ? In vivo 17O NMR can noninvasively image brain oxygen metabolism and perfusion. ? In vivo 17O NMR is useful for mapping the functional change in oxygen...
nmrlearner
Journal club
0
04-24-2011 03:42 PM
[Stan NMR blog] Mercury in-vivo imaging?
Mercury in-vivo imaging?
Answer to a query about the feasibility of 199Hg MRI
Source: Stan blog library