BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 04-28-2015, 12:13 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Strategies for the hyperpolarization of acetonitrile and related ligands by SABRE

From The DNP-NMR Blog:

Strategies for the hyperpolarization of acetonitrile and related ligands by SABRE


Mewis, R.E., et al., Strategies for the hyperpolarization of acetonitrile and related ligands by SABRE. J Phys Chem B, 2015. 119(4): p. 1416-24.


http://www.ncbi.nlm.nih.gov/pubmed/25539423


We report on a strategy for using SABRE (signal amplification by reversible exchange) for polarizing (1)H and (13)C nuclei of weakly interacting ligands which possess biologically relevant and nonaromatic motifs. We first demonstrate this via the polarization of acetonitrile, using Ir(IMes)(COD)Cl as the catalyst precursor, and confirm that the route to hyperpolarization transfer is via the J-coupling network. We extend this work to the polarization of propionitrile, benzylnitrile, benzonitrile, and trans-3-hexenedinitrile in order to assess its generality. In the (1)H NMR spectrum, the signal for acetonitrile is enhanced 8-fold over its thermal counterpart when [Ir(H)2(IMes)(MeCN)3](+) is the catalyst. Upon addition of pyridine or pyridine-d5, the active catalyst changes to [Ir(H)2(IMes)(py)2(MeCN)](+) and the resulting acetonitrile (1)H signal enhancement increases to 20- and 60-fold, respectively. In (13)C NMR studies, polarization transfers optimally to the quaternary (13)C nucleus of MeCN while the methyl (13)C is hardly polarized. Transfer to (13)C is shown to occur first via the (1)H-(1)H coupling between the hydrides and the methyl protons and then via either the (2)J or (1)J couplings to the respective (13)Cs, of which the (2)J route is more efficient. These experimental results are rationalized through a theoretical treatment which shows excellent agreement with experiment. In the case of MeCN, longitudinal two-spin orders between pairs of (1)H nuclei in the three-spin methyl group are created. Two-spin order states, between the (1)H and (13)C nuclei, are also created, and their existence is confirmed for Me(13)CN in both the (1)H and (13)C NMR spectra using the Only Parahydrogen Spectroscopy protocol.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Quantitative Trace Analysis of Complex Mixtures Using SABRE Hyperpolarization
From The DNP-NMR Blog: Quantitative Trace Analysis of Complex Mixtures Using SABRE Hyperpolarization Eshuis, N., et al., Quantitative Trace Analysis of Complex Mixtures Using SABRE Hyperpolarization. Angew Chem Int Ed Engl, 2014: p. n/a-n/a. http://www.ncbi.nlm.nih.gov/pubmed/25469822
nmrlearner News from NMR blogs 0 01-12-2015 11:31 PM
In Situ and Ex Situ Low-Field NMR Spectroscopy and MRI Endowed by SABRE Hyperpolarization
From The DNP-NMR Blog: In Situ and Ex Situ Low-Field NMR Spectroscopy and MRI Endowed by SABRE Hyperpolarization Barskiy, D.A., et al., In Situ and Ex Situ Low-Field NMR Spectroscopy and MRI Endowed by SABRE Hyperpolarization. ChemPhysChem, 2014. 15(18): p. 4100-7. http://www.ncbi.nlm.nih.gov/pubmed/25367202
nmrlearner News from NMR blogs 0 12-15-2014 03:31 PM
LIGHT-SABRE enables efficient in-magnet catalytic hyperpolarization
From The DNP-NMR Blog: LIGHT-SABRE enables efficient in-magnet catalytic hyperpolarization Theis, T., et al., LIGHT-SABRE enables efficient in-magnet catalytic hyperpolarization. J Magn Reson, 2014. 248C(0): p. 23-26. http://www.ncbi.nlm.nih.gov/pubmed/25299767
nmrlearner News from NMR blogs 0 11-08-2014 12:08 AM
Toward nanomolar detection by NMR through SABRE hyperpolarization
From The DNP-NMR Blog: Toward nanomolar detection by NMR through SABRE hyperpolarization Eshuis, N., et al., Toward nanomolar detection by NMR through SABRE hyperpolarization. J Am Chem Soc, 2014. 136(7): p. 2695-8. http://www.ncbi.nlm.nih.gov/pubmed/24475903
nmrlearner News from NMR blogs 0 05-09-2014 07:01 PM
Level Anti-Crossings are a Key Factor for Understanding para-Hydrogen-Induced Hyperpolarization in SABRE Experiments
From The DNP-NMR Blog: Level Anti-Crossings are a Key Factor for Understanding para-Hydrogen-Induced Hyperpolarization in SABRE Experiments Pravdivtsev, A.N., et al., Level Anti-Crossings are a Key Factor for Understanding para-Hydrogen-Induced Hyperpolarization in SABRE Experiments. ChemPhysChem, 2013. 14(14): p. 3327-3331. http://www.ncbi.nlm.nih.gov/pubmed/23959909
nmrlearner News from NMR blogs 0 04-16-2014 11:09 PM
TowardNanomolar Detection by NMR Through SABRE Hyperpolarization
TowardNanomolar Detection by NMR Through SABRE Hyperpolarization Nan Eshuis, Niels Hermkens, Bram J. A. van Weerdenburg, Martin C. Feiters, Floris P. J. T. Rutjes, Sybren S. Wijmenga and Marco Tessari http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja412994k/aop/images/medium/ja-2013-12994k_0006.gif Journal of the American Chemical Society DOI: 10.1021/ja412994k http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/CRRo27dOPlc
nmrlearner Journal club 0 02-05-2014 06:08 PM
[NMR paper] NMR-Based Strategies to Elucidate Bioactive Conformations of Weakly Binding Ligands.
NMR-Based Strategies to Elucidate Bioactive Conformations of Weakly Binding Ligands. Related Articles NMR-Based Strategies to Elucidate Bioactive Conformations of Weakly Binding Ligands. Top Curr Chem. 2008;273:1-14 Authors: Blommers MJ, Strauss A, Geiser M, Ramage P, Sparrer H, Jahnke W Abstract Key processes in molecular biology are regulated by interactions between biomolecules. Protein-proteinand protein-ligand interactions, e.g., in signal transduction pathways, rely on the subtle interactionsbetween atoms at the binding interface of...
nmrlearner Journal club 0 04-24-2013 09:48 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:09 AM.


Map