BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 07-09-2014, 05:07 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,775
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Spin dynamic simulations of solid effect DNP: the role of the relaxation superoperator

From The DNP-NMR Blog:

Spin dynamic simulations of solid effect DNP: the role of the relaxation superoperator


Karabanov, A., G. Kwiatkowski, and W. Köckenberger, Spin dynamic simulations of solid effect DNP: the role of the relaxation superoperator. Mol. Phys., 2014: p. 1-17.


http://dx.doi.org/10.1080/00268976.2014.884287


Relaxation plays a crucial role in the spin dynamics of dynamic nuclear polarisation. We review here two different strategies that have recently been used to incorporate relaxation in models to predict the spin dynamics of solid effect dynamic nuclear polarisation. A detailed explanation is provided on how the Lindblad?Kossakowski form of the master equation can be used to describe relaxation in a spin system. Fluctuations of the spin interactions with the environment as a cause of relaxation are discussed and it is demonstrated how the relaxation superoperator acting in Liouville space on the density operator can be derived in the Lindblad?Kossakowski form by averaging out non-secular terms in an appropriate interaction frame. Furthermore we provide a formalism for the derivation of the relaxation superoperator starting with a choice of a basis set in Hilbert space. We show that the differences in the prediction of the nuclear polarisation dynamics that are found for certain parameter choices arise from the use of different interaction frames in the two different strategies. In addition, we provide a summary of different relaxation mechanisms that need to be considered to obtain more realistic spin dynamic simulations of solid effect dynamic nuclear polarisation.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Role of Electron Spin Dynamics on Solid-State Dynamic Nuclear Polarization Performance
From The DNP-NMR Blog: Role of Electron Spin Dynamics on Solid-State Dynamic Nuclear Polarization Performance Siaw, T.A., et al., Role of Electron Spin Dynamics on Solid-State Dynamic Nuclear Polarization Performance. Phys. Chem. Chem. Phys., 2014. http://dx.doi.org/10.1039/C4CP02013H
nmrlearner News from NMR blogs 0 06-20-2014 08:14 PM
Static (1)H dynamic nuclear polarization with the biradical TOTAPOL: a transition between the solid effect and the cross effect
From The DNP-NMR Blog: Static (1)H dynamic nuclear polarization with the biradical TOTAPOL: a transition between the solid effect and the cross effect Shimon, D., et al., Static (1)H dynamic nuclear polarization with the biradical TOTAPOL: a transition between the solid effect and the cross effect. Phys Chem Chem Phys, 2014. 16(14): p. 6687-99. http://www.ncbi.nlm.nih.gov/pubmed/24585094
nmrlearner News from NMR blogs 0 06-04-2014 03:22 PM
The Role of the Interaction Frame in the Theoretical Description of Solid Effect Dynamic Nuclear Polarization
From The DNP-NMR Blog: The Role of the Interaction Frame in the Theoretical Description of Solid Effect Dynamic Nuclear Polarization Kwiatkowski, G., A. Karabanov, and W. Köckenberger, The Role of the Interaction Frame in the Theoretical Description of Solid Effect Dynamic Nuclear Polarization. Israel Journal of Chemistry, 2014. 54(1-2): p. 184-195. http://dx.doi.org/10.1002/ijch.201300125
nmrlearner News from NMR blogs 0 04-30-2014 02:21 PM
Theoretical Aspects of Dynamic Nuclear Polarization in the Solid State: The Influence of High Radical Concentrations on the Solid Effect and Cross Effect Mechanisms
From The DNP-NMR Blog: Theoretical Aspects of Dynamic Nuclear Polarization in the Solid State: The Influence of High Radical Concentrations on the Solid Effect and Cross Effect Mechanisms Hovav, Y., et al., Theoretical Aspects of Dynamic Nuclear Polarization in the Solid State: The Influence of High Radical Concentrations on the Solid Effect and Cross Effect Mechanisms. Appl. Magn. Reson., 2012. 43(1-2): p. 21-41. http://dx.doi.org/10.1007/s00723-012-0359-0
nmrlearner News from NMR blogs 0 11-21-2013 01:14 AM
The interplay between the solid effect and the cross effect mechanisms in solid state 13C DNP at 95 GHz using trityl radicals
From The DNP-NMR Blog: The interplay between the solid effect and the cross effect mechanisms in solid state 13C DNP at 95 GHz using trityl radicals Banerjee, D., et al., The interplay between the solid effect and the cross effect mechanisms in solid state 13C DNP at 95 GHz using trityl radicals. J. Magn. Reson., 2013. 230(0): p. 212-219. http://dx.doi.org/10.1016/j.jmr.2013.02.010
nmrlearner News from NMR blogs 0 05-07-2013 12:31 AM
Effect of glassy modes on electron spin–lattice relaxation in solid ethanol
From the The DNP-NMR Blog: Effect of glassy modes on electron spin–lattice relaxation in solid ethanol Merunka, D., et al., Effect of glassy modes on electron spin–lattice relaxation in solid ethanol. J. Magn. Reson., 2013. 228(0): p. 50-58. http://www.ncbi.nlm.nih.gov/pubmed/23357426
nmrlearner News from NMR blogs 0 04-15-2013 08:52 AM
Challenges in numerical simulations of solid-state NMR experiments: Spin exchange pulse sequences.
Challenges in numerical simulations of solid-state NMR experiments: Spin exchange pulse sequences. Challenges in numerical simulations of solid-state NMR experiments: Spin exchange pulse sequences. Solid State Nucl Magn Reson. 2011 Feb 1; Authors: Vosegaard T While simulations are essential for interpretation of solid-state NMR experiments, large spin systems involved in e.g. spin-diffusion experiments and/or dynamic effects like chemical exchange pose great challenges for the numerical simulations, where we typically want to include effects of...
nmrlearner Journal club 0 02-19-2011 06:02 PM
[NMR paper] A 31P-NMR spin-lattice relaxation and 31P[1H] nuclear Overhauser effect study of soni
A 31P-NMR spin-lattice relaxation and 31P nuclear Overhauser effect study of sonicated small unilamellar phosphatidylcholine vesicles. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles A 31P-NMR spin-lattice relaxation and 31P nuclear Overhauser effect study of sonicated small unilamellar phosphatidylcholine vesicles. Biochim Biophys Acta. 1992 Feb 17;1104(1):137-46 Authors: Tauskela JS, Thompson M The motional properties of the inner and outer monolayer headgroups of...
nmrlearner Journal club 0 08-21-2010 11:41 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:35 PM.


Map