Gajan, D., et al., Solid-phase polarization matrixes for dynamic nuclear polarization from homogeneously distributed radicals in mesostructured hybrid silica materials. J Am Chem Soc, 2013. 135(41): p. 15459-66.
Mesoporous hybrid silica-organic materials containing homogeneously distributed stable mono- or dinitroxide radicals covalently bound to the silica surface were developed as polarization matrixes for solid-state dynamic nuclear polarization (DNP) NMR experiments. For TEMPO-containing materials impregnated with water or 1,1,2,2-tetrachloroethane, enhancement factors of up to 36 were obtained at approximately 100 K and 9.4 T without the need for a glass-forming additive. We show that the homogeneous radical distribution and the subtle balance between the concentration of radical in the material and the fraction of radicals at a sufficient inter-radical distance to promote the cross-effect are the main determinants for the DNP enhancements we obtain. The material, as well as an analogue containing the poorly soluble biradical bTUrea, is used as a polarizing matrix for DNP NMR experiments of solutions containing alanine and pyruvic acid. The analyte is separated from the polarization matrix by simple filtration.
Temperature dependence of high field 13C dynamic nuclear polarization processes with trityl radicals below 35 Kelvin
From The DNP-NMR Blog:
Temperature dependence of high field 13C dynamic nuclear polarization processes with trityl radicals below 35 Kelvin
Walker, S.A., et al., Temperature dependence of high field 13C dynamic nuclear polarization processes with trityl radicals below 35 Kelvin. Phys. Chem. Chem. Phys., 2013.
http://dx.doi.org/10.1039/C3CP51628H
nmrlearner
News from NMR blogs
0
09-06-2013 06:52 PM
Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials
From The DNP-NMR Blog:
Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials
Kobayashi, T., et al., Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials. Phys Chem Chem Phys, 2013. 15(15): p. 5553-62.
http://www.ncbi.nlm.nih.gov/pubmed/23459985
nmrlearner
News from NMR blogs
0
04-17-2013 08:15 PM
Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials
From the The DNP-NMR Blog:
Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials
Kobayashi, T., et al., Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials. Phys Chem Chem Phys, 2013. 15(15): p. 5553-62.
http://www.ncbi.nlm.nih.gov/pubmed/23459985
Fast Characterization of Functionalized Silica Materials by Silicon-29 Surface-Enhanced NMR Spectroscopy Using Dynamic Nuclear Polarization
Fast Characterization of Functionalized Silica Materials by Silicon-29 Surface-Enhanced NMR Spectroscopy Using Dynamic Nuclear Polarization
Moreno Lelli, David Gajan, Anne Lesage, Marc A. Caporini, Veronika Vitzthum, Pascal Mie?ville, Florent He?roguel, Fernando Rasco?n, Arthur Roussey, Chloe? Thieuleux, Malika Boualleg, Laurent Veyre, Geoffrey Bodenhausen, Christophe Cope?ret and Lyndon Emsley
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja110791d/aop/images/medium/ja-2010-10791d_0005.gif
Journal of the American Chemical Society...