BACKGROUND: Integrated PET/MRI with hyperpolarized (13)C magnetic resonance spectroscopic imaging ((13)C-MRSI) offers simultaneous, dual-modality metabolic imaging. A prerequisite for the use of simultaneous imaging is the absence of interference between the two modalities. This has been documented for a clinical whole-body system using simultaneous (1)H-MRI and PET but never for (13)C-MRSI and PET. Here, the feasibility of simultaneous PET and (13)C-MRSI as well as hyperpolarized (13)C-MRSI in an integrated whole-body PET/MRI hybrid scanner is evaluated using phantom experiments. METHODS: Combined PET and (13)C-MRSI phantoms including a NEMA [(18)F]-FDG phantom, (13)C-acetate and (13)C-urea sources, and hyperpolarized (13)C-pyruvate were imaged repeatedly with PET and/or (13)C-MRSI. Measurements evaluated for interference effects included PET activity values in the largest sphere and a background region; total number of PET trues; and (13)C-MRSI signal-to-noise ratio (SNR) for urea and acetate phantoms. Differences between measurement conditions were evaluated using t tests. RESULTS: PET and (13)C-MRSI data acquisition could be performed simultaneously without any discernible artifacts. The average difference in PET activity between acquisitions with and without simultaneous (13)C-MRSI was 0.83 (largest sphere) and -0.76 % (background). The average difference in net trues was -0.01 %. The average difference in (13)C-MRSI SNR between acquisitions with and without simultaneous PET ranged from -2.28 to 1.21 % for all phantoms and measurement conditions. No differences were significant. The system was capable of (13)C-MRSI of hyperpolarized (13)C-pyruvate. CONCLUSIONS: Simultaneous PET and (13)C-MRSI in an integrated whole-body PET/MRI hybrid scanner is feasible. Phantom experiments showed that possible interference effects introduced by acquiring data from the two modalities simultaneously are small and non-significant. Further experiments can now investigate the benefits of simultaneous PET and hyperpolarized (13)C-MRI in vivo studies.
p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica}
Simultaneous hyperpolarized (13)C-pyruvate MRI and (18)F-FDG-PET in cancer (hyperPET): feasibility of a new imaging concept using a clinical PET/MRI scanner
From The DNP-NMR Blog:
Simultaneous hyperpolarized (13)C-pyruvate MRI and (18)F-FDG-PET in cancer (hyperPET): feasibility of a new imaging concept using a clinical PET/MRI scanner
Gutte, H., et al., Simultaneous hyperpolarized (13)C-pyruvate MRI and (18)F-FDG-PET in cancer (hyperPET): feasibility of a new imaging concept using a clinical PET/MRI scanner. American Journal of Nuclear Medicine and Molecular Imaging, 2015. 5(1): p. 38-45.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4299777/
nmrlearner
News from NMR blogs
0
05-14-2015 04:52 AM
Cavity- and waveguide-resonators in electron paramagnetic resonance, nuclear magnetic resonance, and magnetic resonance imaging
From The DNP-NMR Blog:
Cavity- and waveguide-resonators in electron paramagnetic resonance, nuclear magnetic resonance, and magnetic resonance imaging
This is a very nice review of cavities that are used in EPR, NMR and MRI. So far resonators have not been widely employed in DNP spectroscopy - only in some static DNP experiments. However, it is an intriguing problem that could, if solved, allow using cost-effective solid-state sources for DNP even at high temperatures.
Even if this article is not specifically about resonators for DNP it gives a very nice overview of the...
nmrlearner
News from NMR blogs
0
12-09-2014 01:07 AM
[NMR images] Definition of « Magnetic resonance spectroscopic imaging »
http://drugline.org/img/term/magnetic-resonance-spectroscopic-imaging-9041_0.jpg
20/03/2014 12:28:21 PM GMT
Definition of « Magnetic resonance spectroscopic imaging »
More...
nmrlearner
NMR pictures
0
03-20-2014 12:44 PM
Metabolic response of glioma to dichloroacetate measured in vivo by hyperpolarized 13C magnetic resonance spectroscopic imaging
From the The DNP-NMR Blog:
Metabolic response of glioma to dichloroacetate measured in vivo by hyperpolarized 13C magnetic resonance spectroscopic imaging
Park, J.M., et al., Metabolic response of glioma to dichloroacetate measured in vivo by hyperpolarized 13C magnetic resonance spectroscopic imaging. Neuro-Oncology, 2013. 15(4): p. 433-41.
http://neuro-oncology.oxfordjournals.org/content/early/2013/01/16/neuonc.nos319.abstract
nmrlearner
News from NMR blogs
0
04-15-2013 08:52 AM
[NMR paper] Design of a novel class of protein-based magnetic resonance imaging contrast agents for the molecular imaging of cancer biomarkers.
Design of a novel class of protein-based magnetic resonance imaging contrast agents for the molecular imaging of cancer biomarkers.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles Design of a novel class of protein-based magnetic resonance imaging contrast agents for the molecular imaging of cancer biomarkers.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013 Jan 17;
Authors: Xue S, Qiao J, Pu F, Cameron M, Yang JJ
Abstract
Magnetic...