BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 02-23-2016, 12:44 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Sensitivity-enhanced NMR reveals alterations in protein structure by cellular milieus

From The DNP-NMR Blog:

Sensitivity-enhanced NMR reveals alterations in protein structure by cellular milieus


Frederick, K.K., et al., Sensitivity-enhanced NMR reveals alterations in protein structure by cellular milieus. Cell, 2015. 163(3): p. 620-8.


http://www.ncbi.nlm.nih.gov/pubmed/26456111


Biological processes occur in complex environments containing a myriad of potential interactors. Unfortunately, limitations on the sensitivity of biophysical techniques normally restrict structural investigations to purified systems, at concentrations that are orders of magnitude above endogenous levels. Dynamic nuclear polarization (DNP) can dramatically enhance the sensitivity of nuclear magnetic resonance (NMR) spectroscopy and enable structural studies in biologically complex environments. Here, we applied DNP NMR to investigate the structure of a protein containing both an environmentally sensitive folding pathway and an intrinsically disordered region, the yeast prion protein Sup35. We added an exogenously prepared isotopically labeled protein to deuterated lysates, rendering the biological environment "invisible" and enabling highly efficient polarization transfer for DNP. In this environment, structural changes occurred in a region known to influence biological activity but intrinsically disordered in purified samples. Thus, DNP makes structural studies of proteins at endogenous levels in biological contexts possible, and such contexts can influence protein structure.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Into the fold: Sensitivity-enhanced NMR
Into the fold: Sensitivity-enhanced NMR http://www.spectroscopynow.com/common/images/thumbnails/15061c31a88.jpgResearchers at Massachusetts Institute of Technology have used sensitivity-enhanced nuclear magnetic resonance (NMR) spectroscopy to analyse the structure that a yeast protein forms as it interacts with other proteins in a cell opening up new insights into protein folding and misfolding. Read the rest at Spectroscopynow.com
nmrlearner General 0 10-15-2015 12:19 PM
[NMR paper] Sensitivity-Enhanced NMR Reveals Alterations in Protein Structure by Cellular Milieus.
Sensitivity-Enhanced NMR Reveals Alterations in Protein Structure by Cellular Milieus. Sensitivity-Enhanced NMR Reveals Alterations in Protein Structure by Cellular Milieus. Cell. 2015 Oct 7; Authors: Frederick KK, Michaelis VK, Corzilius B, Ong TC, Jacavone AC, Griffin RG, Lindquist S Abstract Biological processes occur in complex environments containing a myriad of potential interactors. Unfortunately, limitations on the sensitivity of biophysical techniques normally restrict structural investigations to purified systems, at...
nmrlearner Journal club 0 10-13-2015 06:03 PM
Enhanced-sensitivity NMR could reveal new clues to how proteins fold - Phys.Org
Enhanced-sensitivity NMR could reveal new clues to how proteins fold - Phys.Org http://www.bionmr.com//t1.gstatic.com/images?q=tbn:ANd9GcRv5kcqepdG7qJM0UMWGlFFd6B7LANvsM9YhElwPbgnXWRAEWGTHs3JS_oQLgMHS8kZCRwpmbo Phys.Org <img alt="" height="1" width="1"> Enhanced-sensitivity NMR could reveal new clues to how proteins fold Phys.Org Until now, it has been difficult to fully characterize the different structures that proteins can take on in their natural environments. However, using a new technique known as sensitivity-enhanced nuclear magnetic resonance (NMR), MIT researchers have ... ...
nmrlearner Online News 0 10-09-2015 04:49 PM
Sensitivity-Enhanced NMR Reveals Alterations in Protein Structure by Cellular Milieus
Sensitivity-Enhanced NMR Reveals Alterations in Protein Structure by Cellular Milieus Publication date: Available online 8 October 2015 Source:Cell</br> Author(s): Kendra*K. Frederick, Vladimir*K. Michaelis, Björn Corzilius, Ta-Chung Ong, Angela*C. Jacavone, Robert*G. Griffin, Susan Lindquist</br> Biological processes occur in complex environments containing a myriad of potential interactors. Unfortunately, limitations on the sensitivity of biophysical techniques normally restrict structural investigations to purified systems, at concentrations that are...
nmrlearner Journal club 0 10-09-2015 03:05 AM
HyperBIRD: A Sensitivity-Enhanced Approach to Collecting Homonuclear-Decoupled Proton NMR Spectra
From The DNP-NMR Blog: HyperBIRD: A Sensitivity-Enhanced Approach to Collecting Homonuclear-Decoupled Proton NMR Spectra Donovan, K.J. and L. Frydman, HyperBIRD: A Sensitivity-Enhanced Approach to Collecting Homonuclear-Decoupled Proton NMR Spectra. Angew Chem Int Ed Engl, 2014: p. n/a-n/a. http://www.ncbi.nlm.nih.gov/pubmed/25256418
nmrlearner News from NMR blogs 0 01-09-2015 03:58 PM
[NMR paper] Sensitivity-enhanced static 15N NMR of solids by 1h indirect detection.
Sensitivity-enhanced static 15N NMR of solids by 1h indirect detection. Related Articles Sensitivity-enhanced static 15N NMR of solids by 1h indirect detection. J Magn Reson. 2001 May;150(1):43-8 Authors: Hong M, Yamaguchi S A method for enhancing the sensitivity of 15N spectra of nonspinning solids through 1H indirect detection is introduced. By sampling the 1H signals in the windows of a pulsed spin-lock sequence, high-sensitivity 1H spectra can be obtained in two-dimensional (2D) spectra whose indirect dimension yields the 15N chemical...
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] Sensitivity enhanced NMR spectroscopy by quenching scalar coupling mediated relaxatio
Sensitivity enhanced NMR spectroscopy by quenching scalar coupling mediated relaxation: application to the direct observation of hydrogen bonds in 13C/15N-labeled proteins. Related Articles Sensitivity enhanced NMR spectroscopy by quenching scalar coupling mediated relaxation: application to the direct observation of hydrogen bonds in 13C/15N-labeled proteins. J Biomol NMR. 2000 May;17(1):55-61 Authors: Liu A, Hu W, Qamar S, Majumdar A In this paper, we demonstrate that the sensitivity of triple-resonance NMR experiments can be enhanced...
nmrlearner Journal club 0 11-18-2010 09:15 PM
Structure of key protein for cellular signal transduction elucidated - News-Medical.n
Structure of key protein for cellular signal transduction elucidated - News-Medical.net <img alt="" height="1" width="1" /> Structure of key protein for cellular signal transduction elucidated News-Medical.net Using NMR spectroscopy, Professor Michael Sattler and his team elucidated the spatial structure of the Qua1 region of Sam68, which is responsible for the ... and more &raquo; Read here
nmrlearner Online News 0 09-10-2010 12:58 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:28 PM.


Map