Hanrahan, Michael P., Long Men, Bryan A. Rosales, Javier Vela, and Aaron J. Rossini. “Sensitivity-Enhanced 207 Pb Solid-State NMR Spectroscopy for the Rapid, Non-Destructive Characterization of Organolead Halide Perovskites.” Chemistry of Materials, October 4, 2018.
Organolead halide and mixed halide perovskites (CH3NH3PbX3, CH3NH3PbX3–nYn, X and Y = Cl–, Br– or I–), are promising materials for photovoltaics and optoelectronic devices. 207Pb solid-state NMR spectroscopy has previously been applied to characterize phase segregation and halide ion speciation in mixed halide perovskites. However, NMR spectroscopy is an insensitive technique that often requires large sample volumes and long signal averaging periods. This is especially true for mixed halide perovskites, which give rise to extremely broad 207Pb solid-state NMR spectra. Here, we quantitatively compare the sensitivity of the various solid-state NMR techniques on pure and mixed halide organolead perovskites and demonstrate that both fast MAS and DNP can provide substantial gains in NMR sensitivity for these materials. With fast MAS and proton detection, high signal-to-noise ratio two-dimensional (2D) 207Pb-1H heteronuclear correlation (HETCOR) NMR spectra can be acquired in less than half an hour from only ca. 5 ?L of perovskite material. Modest relayed DNP enhancements on the order of 1 to 20 were obtained for perovskites. The cryogenic temperatures (110 K) used for DNP experiments also provide a significant boost in sensitivity. Consequently, it was possible to obtain the 207Pb solid-state NMR spectrum of a 300 nm thick model thin film of CH3NH3PbI3 in 34 hours by performing solid-state NMR experiments with a sample temperature of 110 K. This result demonstrates the possibility of using NMR spectroscopy for characterization of perovskite thin films.
p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} span.s1 {font: 8.0px Helvetica}
[ASAP] Phase Segregation in Potassium-Doped Lead Halide Perovskites from 39K Solid-State NMR at 21.1 T
Phase Segregation in Potassium-Doped Lead Halide Perovskites from 39K Solid-State NMR at 21.1 T
Dominik J. Kubicki, Daniel Prochowicz, Albert Hofstetter, Shaik M. Zakeeruddin, Michael Grätzel, Lyndon Emsley
https://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/jacs.8b03191/20180531/images/medium/ja-2018-03191d_0005.gif
Journal of the American Chemical Society
DOI: 10.1021/jacs.8b03191
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/BBIRX6v6V1A
DNP-enhanced solid-state NMR spectroscopy of active pharmaceutical ingredients #DNPNMR
From The DNP-NMR Blog:
DNP-enhanced solid-state NMR spectroscopy of active pharmaceutical ingredients #DNPNMR
Zhao, L., et al., DNP-enhanced solid-state NMR spectroscopy of active pharmaceutical ingredients. Magn. Reson. Chem., 2017. 0(0).
https://www.ncbi.nlm.nih.gov/pubmed/29193278
Oxygen-17 dynamic nuclear polarisation enhanced solid-state NMR spectroscopy at 18.8 T #DNPNMR
From The DNP-NMR Blog:
Oxygen-17 dynamic nuclear polarisation enhanced solid-state NMR spectroscopy at 18.8 T #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Brownbill, N.J., et al., Oxygen-17 dynamic nuclear polarisation enhanced solid-state NMR spectroscopy at 18.8 T. Chem Commun (Camb), 2017. 53(17): p. 2563-2566.
https://www.ncbi.nlm.nih.gov/pubmed/28184389
nmrlearner
News from NMR blogs
0
06-10-2017 05:21 PM
Atomic-Level Structure Characterization of Biomass Pre- and Post-Lignin Treatment by Dynamic Nuclear Polarization-Enhanced Solid-State NMR #DNPNMR
From The DNP-NMR Blog:
Atomic-Level Structure Characterization of Biomass Pre- and Post-Lignin Treatment by Dynamic Nuclear Polarization-Enhanced Solid-State NMR #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Perras, F.A., et al., Atomic-Level Structure Characterization of Biomass Pre- and Post-Lignin Treatment by Dynamic Nuclear Polarization-Enhanced Solid-State NMR. The Journal of Physical Chemistry A, 2017. 121(3): p. 623-630.
http://dx.doi.org/10.1021/acs.jpca.6b11121
nmrlearner
News from NMR blogs
0
04-15-2017 03:24 AM
DNP-Enhanced Ultrawideline Solid-State NMR Spectroscopy: Studies of Platinum in Metal-Organic Frameworks #DNPNMR
From The DNP-NMR Blog:
DNP-Enhanced Ultrawideline Solid-State NMR Spectroscopy: Studies of Platinum in Metal-Organic Frameworks #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Kobayashi, T., et al., DNP-Enhanced Ultrawideline Solid-State NMR Spectroscopy: Studies of Platinum in Metal-Organic Frameworks. J Phys Chem Lett, 2016. 7(13): p. 2322-7.
https://www.ncbi.nlm.nih.gov/pubmed/27266444