BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 12-01-2010, 08:36 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Routine Prediction

Routine Prediction

Not everybody remembers how easy it is and how effective it can be to add (or correct) a few points at the beginning of the FID. Two years ago I explained how Linear Prediction works and how we can extrapolate the FID in both directions. This time I will show a simple practical application.
I have observed that, in recent years, C-13 spectra acquired on Varian instruments require a much-larger-then-it-used-to-be phase correction. When I say correction, I mean first-order phase correction, because the zero-order correction is merely a different way of representing the same thing (a different perspective).
A large first-order phase correction can be substituted with linear prediction. I will show the advantage with a F-19 example, yet the concept is general.

The spectrum, after FT and before phase correction, looks well acquired. Now we apply the needed correction, which amounts to no less than 1073 degrees.

Have you noticed what happened to the baseline? It's all predictable. When you increase the phase correction, the baseline starts rolling. The higher the phase correction, the shorter the waves. With modern method for correcting the baseline we eliminate all the waves, yet there are two potential problems: 1) The common methods for automatic phase correction will have an hard time. 2) If you prefer manual phase correction, you need an expert eye to assess the symmetry of the peaks over such a rolling baseline. Anyway, just to show you that linear prediciton is not a necessity, here is the spectrum after applying standard baseline correction:

Now let's start from the FID again, this time applying linear prediction. one way to use it is to add the 3 missing points at the beginning. The result, after a mild phase correction (
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
SHIFTX2: Chemical Shift Prediction
SHIFTX2 website SHIFTX2 is capable of rapidly and accurately calculating diamagnetic 1H, 13C and 15N chemical shifts from protein coordinate data. Compared to its predecessor (SHIFTX) and to other existing protein chemical shift prediction programs, SHIFTX2 is substantially more accurate (up to 26% better by correlation coefficient with an RMS error that is up to 3.3× smaller) than the next best performing program. It also provides significantly more coverage (up to 10% more), is significantly faster (up to 8.5×) and capable of calculating a wider variety of backbone and side chain...
gwnmr NMR software 0 01-10-2012 06:13 PM
[Question from NMRWiki Q&A forum] shake routine and ncon parameter
shake routine and ncon parameter Trying to do molecular dynamics with explicit water molecules I came across a problem with SHAKE routine: shake reference = parameters bonds (hydrogen) (all) tolerance = 1.0e-06 nconstraints=8000end and error message after this is: X-PLOR>shake SHAKE> reference = parameters SHAKE> bonds (hydrogen) (all) SELRPN: 7142 atoms have been selected out of 11032 SELRPN: 11032 atoms have been selected out of 11032 SHKSET: reference = parameters %XREFIN-ERR: allocation for SHAKE-constraints exceeded ...
nmrlearner News from other NMR forums 0 10-27-2011 11:42 PM
4D prediction of protein 1H chemical shifts
4D prediction of protein 1H chemical shifts Abstract A 4D approach for protein 1H chemical shift prediction was explored. The 4th dimension is the molecular flexibility, mapped using molecular dynamics simulations. The chemical shifts were predicted with a principal component model based on atom coordinates from a database of 40 protein structures. When compared to the corresponding non-dynamic (3D) model, the 4th dimension improved prediction by 6â??7%. The prediction method achieved RMS errors of 0.29 and 0.50 ppm for Hα and HN shifts, respectively. However, for individual proteins...
nmrlearner Journal club 0 01-09-2011 12:46 PM
[NMRwiki tweet] nmrwiki: are ultra-high quality #nmr tubes worth it for routine work? http://qa.nmrwi
nmrwiki: are ultra-high quality #nmr tubes worth it for routine work? http://qa.nmrwiki.org/question/158/ nmrwiki: are ultra-high quality #nmr tubes worth it for routine work? http://qa.nmrwiki.org/question/158/ Source: NMRWiki tweets
nmrlearner Twitter NMR 0 08-22-2010 01:49 AM
[Stan NMR blog] Is protein structure determination by NMR a routine?
Is protein structure determination by NMR a routine? An interview with Chris Spronk of 'Spronk NMR Consultancy' More...
nmrlearner News from NMR blogs 0 08-21-2010 05:42 PM
SPINUS-WEB: Prediction of NMR spectra
SPINUS-WEB: Prediction of NMR spectra More...
nmrlearner NMR bookmarks 0 08-19-2010 02:34 PM
A Guide to Structure Prediction, by Rob Russell
A Guide to Structure Prediction (version 2.1) (link) Rob Russel (for EMBL) gives a useful, step-by-step guide to predicting 3D protein structure, and provides links to numerous online resources. An excerpt from the website is pasted below. """ Introduction This is by no means intended to be a comprehensive guide to predicting protein 3D structure. Rather, I have tried as best as possible to summarise my general approach to the problem in a manner that I hope is useful and not too difficult to follow. I apologise in advance for failing to include various references, WWW sites, etc. I...
Lukas Educational web pages 0 08-30-2008 01:38 AM
Prediction of protein stability after mutation
If you want to make a mutation in your protein to make it behave better in NMR tube, you may consider predicting the change of protein stability and function upon the mutation...it may help to prevent months of wasted time. Check these web servers: StabilityI-Mutant 2.0 Fold-X PoPMuSiC MUpro Function general PolyPhen
nmrlearner Structural analysis 0 09-08-2005 09:59 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:45 PM.


Map