BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-25-2018, 06:02 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Resolving the Core and the Surface of CdSe Quantum Dots and Nanoplatelets Using Dynamic Nuclear Polarization Enhanced PASS–PIETA NMR Spectroscopy #DNPNMR

From The DNP-NMR Blog:

Resolving the Core and the Surface of CdSe Quantum Dots and Nanoplatelets Using Dynamic Nuclear Polarization Enhanced PASS–PIETA NMR Spectroscopy #DNPNMR

Piveteau, Laura, Ta-Chung Ong, Brennan J. Walder, Dmitry N. Dirin, Daniele Moscheni, Barbara Schneider, Janine Bär, et al. “Resolving the Core and the Surface of CdSe Quantum Dots and Nanoplatelets Using Dynamic Nuclear Polarization Enhanced PASS–PIETA NMR Spectroscopy.” ACS Central Science 4, no. 9 (September 26, 2018): 1113–25.


https://doi.org/10.1021/acscentsci.8b00196.


Understanding the surface of semiconductor nanocrystals (NCs) prepared using colloidal methods is a longstanding goal of paramount importance for all their potential optoelectronic applications, which remains unsolved largely because of the lack of site-specific physical techniques. Here, we show that multidimensional 113Cd dynamic nuclear polarization (DNP) enhanced NMR spectroscopy allows the resolution of signals originating from different atomic and magnetic surroundings in the NC cores and at the surfaces. This enables the determination of the structural perfection, and differentiation between the surface and core atoms in all major forms of size- and shape-engineered CdSe NCs: irregularly faceted quantum dots (QDs) and atomically flat nanoplatelets, including both dominant polymorphs (zinc-blende and wurtzite) and their epitaxial nanoheterostructures (CdSe/CdS core/shell quantum dots and CdSe/CdS core/crown nanoplatelets), as well as magic-sized CdSe clusters. Assignments of the NMR signals to specific crystal facets of oleate-terminated ZB structured CdSe NCs are proposed. Significantly, we discover far greater atomistic complexity of the surface structure and the species distribution in wurtzite as compared to zinc-blende CdSe QDs, despite an apparently identical optical quality of both QD polymorphs.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Correctionto “Structure of Colloidal QuantumDots from Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy”
Correctionto “Structure of Colloidal QuantumDots from Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy” Laura Piveteau, Ta-Chung Ong, Aaron J. Rossini, Lyndon Emsley, Christophe Cope?ret and Maksym V. Kovalenko Journal of the American Chemical Society DOI: 10.1021/jacs.7b11716 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/_CcoqPmsu6Q
nmrlearner Journal club 0 11-29-2017 09:22 AM
Characterizing Substrate-Surface Interactions on Alumina-Supported Metal Catalysts by Dynamic Nuclear Polarization-Enhanced Double-Resonance NMR Spectroscopy #DNPNMR
From The DNP-NMR Blog: Characterizing Substrate-Surface Interactions on Alumina-Supported Metal Catalysts by Dynamic Nuclear Polarization-Enhanced Double-Resonance NMR Spectroscopy #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Perras, F.A., et al., Characterizing Substrate-Surface Interactions on Alumina-Supported Metal Catalysts by Dynamic Nuclear Polarization-Enhanced Double-Resonance NMR Spectroscopy. J Am Chem Soc, 2017. 139(7): p. 2702-2709. https://www.ncbi.nlm.nih.gov/pubmed/28112506
nmrlearner News from NMR blogs 0 06-13-2017 06:55 AM
Structure of Colloidal Quantum Dots from Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy
From The DNP-NMR Blog: Structure of Colloidal Quantum Dots from Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy Piveteau, L., et al., Structure of Colloidal Quantum Dots from Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy. J Am Chem Soc, 2015. 137(43): p. 13964-71. http://www.ncbi.nlm.nih.gov/pubmed/26473384
nmrlearner News from NMR blogs 0 11-09-2015 05:03 PM
Structureof Colloidal Quantum Dots from Dynamic NuclearPolarization Surface Enhanced NMR Spectroscopy
Structureof Colloidal Quantum Dots from Dynamic NuclearPolarization Surface Enhanced NMR Spectroscopy Laura Piveteau, Ta-Chung Ong, Aaron J. Rossini, Lyndon Emsley, Christophe Cope?ret and Maksym V. Kovalenko http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/jacs.5b09248/20151023/images/medium/ja-2015-09248y_0007.gif Journal of the American Chemical Society DOI: 10.1021/jacs.5b09248 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/lZ81rY_-3Gw
nmrlearner Journal club 0 10-24-2015 05:49 AM
Dynamic nuclear polarization and Hanle effect in (In,Ga)As/GaAs quantum dots. Role of nuclear spin fluctuations
From The DNP-NMR Blog: Dynamic nuclear polarization and Hanle effect in (In,Ga)As/GaAs quantum dots. Role of nuclear spin fluctuations Gerlovin, I.Y., et al., Dynamic nuclear polarization and Hanle effect in (In,Ga)As/GaAs quantum dots. Role of nuclear spin fluctuations. AIP Conference Proceedings, 2013. 1566(1): p. 319-320. http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4848414
nmrlearner News from NMR blogs 0 12-06-2014 04:54 AM
Dynamic nuclear polarization and Hanle effect in (In,Ga)As/GaAs quantum dots. Role of nuclear spin fluctuations
From The DNP-NMR Blog: Dynamic nuclear polarization and Hanle effect in (In,Ga)As/GaAs quantum dots. Role of nuclear spin fluctuations Gerlovin, I.Y., et al., Dynamic nuclear polarization and Hanle effect in (In,Ga)As/GaAs quantum dots. Role of nuclear spin fluctuations. AIP Conference Proceedings, 2013. 1566(1): p. 319-320. http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4848414
nmrlearner News from NMR blogs 0 11-18-2014 01:39 AM
Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy
From The DNP-NMR Blog: Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy Rossini, A.J., et al., Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy. Acc. Chem. Res., 2013. http://www.ncbi.nlm.nih.gov/pubmed/23517009
nmrlearner News from NMR blogs 0 06-01-2013 12:38 AM
Surface Enhanced NMR Spectroscopy by Dynamic Nuclear Polarization
Surface Enhanced NMR Spectroscopy by Dynamic Nuclear Polarization Anne Lesage, Moreno Lelli, David Gajan, Marc A. Caporini, Veronika Vitzthum, Pascal Mie?ville, Johan Alauzun, Arthur Roussey, Chloe? Thieuleux, Ahmad Medhi, Geoffrey Bodenhausen, Christophe Cope?ret and Lyndon Emsley http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja104771z/aop/images/medium/ja-2010-04771z_0004.gif Journal of the American Chemical Society DOI: 10.1021/ja104771z http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner Journal club 0 09-11-2010 01:25 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:29 AM.


Map