BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 04-01-2015, 09:00 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,733
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Quantum mechanical aspects of dynamical neutron polarization

From The DNP-NMR Blog:

Quantum mechanical aspects of dynamical neutron polarization


I came across this article about DNP, apparently the acronym is not just used as in DNP-NMR but also for Dynamic Neutron Polarization, Dinitrophenol, Doctor of Nursing Practice etc. ...






Betz, T., G. Badurek, and E. Jericha, Quantum mechanical aspects of dynamical neutron polarization. Physica B: Condensed Matter, 2007. 397(1-2): p. 195-197.


http://www.sciencedirect.com/science...21452607001639


Dynamic Neutron Polarization (DNP) is a concept which allows to achieve complete polarization of slow neutrons, virtually without any loss of intensity. There the neutrons pass through a combination of a static and a rotating magnetic field in resonance, like in a standard NMR apparatus. Depending on their initial spin state, they end up with different kinetic energies and therefore different velocity. In a succeeding magnetic precession field this distinction causes a different total precession angle. Tuning the field strength can lead to a final state where two original anti-parallel spin states are aligned parallel and hence to polarization. The goal of this work is to describe the quantum mechanical aspects of DNP and to work out the differences to the semi-classical treatment. We show by quantum mechanical means, that the concept works and DNP is feasible, indeed. Therefore, we have to take a closer look to the behavior of neutron wave functions in magnetic fields. In the first Section we consider a monochromatic continuous beam. The more realistic case of a pulsed, polychromatic beam requires a time-dependent field configuration and will be treated in the second Section. In particular the spatial separation of the spin up- and down-states is considered, because it causes an effect of polarization damping so that one cannot achieve a fully polarized final state. This effect is not predicted by the semi-classical treatment of DNP. However, this reduction of polarization is very small and can be neglected in realistic DNP-setups.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Quantum mechanical NMR simulation algorithm for protein-size spin systems.
Quantum mechanical NMR simulation algorithm for protein-size spin systems. Quantum mechanical NMR simulation algorithm for protein-size spin systems. J Magn Reson. 2014 Apr 18;243C:107-113 Authors: Edwards LJ, Savostyanov DV, Welderufael ZT, Lee D, Kuprov I Abstract Nuclear magnetic resonance spectroscopy is one of the few remaining areas of physical chemistry for which polynomially scaling quantum mechanical simulation methods have not so far been available. In this communication we adapt the restricted state space...
nmrlearner Journal club 0 05-06-2014 02:24 PM
[NMR paper] Quantum mechanical NMR simulation algorithm for protein-size spin systems
Quantum mechanical NMR simulation algorithm for protein-size spin systems Publication date: Available online 18 April 2014 Source:Journal of Magnetic Resonance</br> Author(s): Luke J. Edwards , D.V. Savostyanov , Z.T. Welderufael , Donghan Lee , Ilya Kuprov</br> Nuclear magnetic resonance spectroscopy is one of the few remaining areas of physical chemistry for which polynomially scaling quantum mechanical simulation methods have not so far been available. In this communication we adapt the restricted state space approximation to protein NMR spectroscopy and...
nmrlearner Journal club 0 04-18-2014 01:35 PM
[NMR paper] Quantitative Quantum Mechanical Spectral Analysis (qQMSA) of (1)H NMR spectra of complex mixtures and biofluids.
Quantitative Quantum Mechanical Spectral Analysis (qQMSA) of (1)H NMR spectra of complex mixtures and biofluids. Related Articles Quantitative Quantum Mechanical Spectral Analysis (qQMSA) of (1)H NMR spectra of complex mixtures and biofluids. J Magn Reson. 2014 Feb 18;242C:67-78 Authors: Tiainen M, Soininen P, Laatikainen R Abstract The quantitative interpretation of (1)H NMR spectra of mixtures like the biofluids is a demanding task due to spectral complexity and overlap. Complications may arise also from water suppression, T2-editing,...
nmrlearner Journal club 0 03-14-2014 06:40 AM
[NMR paper] Quantitative Quantum Mechanical Spectral Analysis (qQMSA) of 1H NMR Spectra of Complex Mixtures and Biofluids
Quantitative Quantum Mechanical Spectral Analysis (qQMSA) of 1H NMR Spectra of Complex Mixtures and Biofluids Publication date: Available online 18 February 2014 Source:Journal of Magnetic Resonance</br> Author(s): Mika Tiainen , Pasi Soininen , Reino Laatikainen</br> The quantitative interpretation of 1H NMR spectra of mixtures like the biofluids is a demanding task due to spectral complexity and overlap. Complications may arise also from water suppression, T2-editing, protein interactions, relaxation differences of the species, experimental artifacts and,...
nmrlearner Journal club 0 02-19-2014 03:12 PM
Long-lived nuclear spin states in methyl groups and quantum-rotor-induced polarization
From The DNP-NMR Blog: Long-lived nuclear spin states in methyl groups and quantum-rotor-induced polarization Meier, B., et al., Long-lived nuclear spin states in methyl groups and quantum-rotor-induced polarization. J Am Chem Soc, 2013. 135(50): p. 18746-9. http://www.ncbi.nlm.nih.gov/pubmed/24252212
nmrlearner News from NMR blogs 0 02-13-2014 01:42 AM
[NMR paper] [Dynamical aspects of protein structures revealed by newly established NMR approaches].
. . Seikagaku. 2013 Aug;85(8):638-45 Authors: Tate S PMID: 24050006
nmrlearner Journal club 0 09-21-2013 06:50 PM
Conformational Preferencesof trans-1,2- and cis-1,3-Cyclohexanedicarboxylic Acids in Water and Dimethyl Sulfoxide as a Function of the Ionization State As Determined from NMR Spectroscopy and Density Functional Theory Quantum Mechanical Calculations
Conformational Preferencesof trans-1,2- and cis-1,3-Cyclohexanedicarboxylic Acids in Water and Dimethyl Sulfoxide as a Function of the Ionization State As Determined from NMR Spectroscopy and Density Functional Theory Quantum Mechanical Calculations Alejandro J. Garza, Mrinmoy Nag, William R. Carroll, William A. Goddard and John D. Roberts http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja302133s/aop/images/medium/ja-2012-02133s_0007.gif Journal of the American Chemical Society DOI: 10.1021/ja302133s...
nmrlearner Journal club 0 08-29-2012 04:28 AM
[NMR thesis] I. Quantum-mechanical chemical exchange. II. NMR of semiconductors
I. Quantum-mechanical chemical exchange. II. NMR of semiconductors Kurur, Narayanan Damodaran (1992) I. Quantum-mechanical chemical exchange. II. NMR of semiconductors. Dissertation (Ph.D.), California Institute of Technology. http://resolver.caltech.edu/CaltechTHESIS:09022011-090934651 More...
nmrlearner NMR theses 0 09-02-2011 07:31 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:04 AM.


Map