BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 03-29-2017, 03:16 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Quantitative analysis of molecular transport across liposomal bilayer by J-mediated 13C Overhauser dynamic nuclear polarization

From The DNP-NMR Blog:

Quantitative analysis of molecular transport across liposomal bilayer by J-mediated 13C Overhauser dynamic nuclear polarization

p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Cheng, C.Y., O.J. Goor, and S. Han, Quantitative analysis of molecular transport across liposomal bilayer by J-mediated 13C Overhauser dynamic nuclear polarization. Anal Chem, 2012. 84(21): p. 8936-40.


https://www.ncbi.nlm.nih.gov/pubmed/23072518


We introduce a new NMR technique to dramatically enhance the solution-state (13)C NMR sensitivity and contrast at 0.35 T and at room temperature by actively transferring the spin polarization from Overhauser dynamic nuclear polarization (ODNP)-enhanced (1)H to (13)C nuclei through scalar (J) coupling, a method that we term J-mediated (13)C ODNP. We demonstrate the capability of this technique by quantifying the permeability of glycine across negatively charged liposomal bilayers composed of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG). The permeability coefficient of glycine across this DPPC/DPPG bilayer is measured to be (1.8 +/- 0.1) x 10(-11)m/s, in agreement with the literature value. We further observed that the presence of 20 mol % cholesterol within the DPPC/DPPG lipid membrane significantly retards the permeability of glycine by a factor of 4. These findings demonstrate that the high sensitivity and contrast of J-mediated (13)C ODNP affords the measurement of the permeation kinetics of small hydrophilic molecules across lipid bilayers, a quantity that is difficult to accurately measure with existing techniques.
p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica}

Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Chapter Sixteen - Overhauser Dynamic Nuclear Polarization Studies on Local Water Dynamics #DNPNMR
From The DNP-NMR Blog: Chapter Sixteen - Overhauser Dynamic Nuclear Polarization Studies on Local Water Dynamics #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Kaminker, I., R. Barnes, and S. Han, Chapter Sixteen - Overhauser Dynamic Nuclear Polarization Studies on Local Water Dynamics, in Methods in Enzymology, Z.Q. Peter and W. Kurt, Editors. 2015, Academic Press. p. 457-483. http://www.sciencedirect.com/science/article/pii/S0076687915004000
nmrlearner News from NMR blogs 0 03-09-2017 12:11 AM
Theoretical treatment of pulsed Overhauser dynamic nuclear polarization: Consideration of a general periodic pulse sequence #DNPNMR
From The DNP-NMR Blog: Theoretical treatment of pulsed Overhauser dynamic nuclear polarization: Consideration of a general periodic pulse sequence #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Nasibulov, E.A., et al., Theoretical treatment of pulsed Overhauser dynamic nuclear polarization: Consideration of a general periodic pulse sequence. JETP Letters, 2016. 103(9): p. 582-587. http://dx.doi.org/10.1134/S0021364016090113
nmrlearner News from NMR blogs 0 02-22-2017 06:28 PM
Toward Quantitative Measurements of Enzyme Kinetics by Dissolution Dynamic Nuclear Polarization
From The DNP-NMR Blog: Toward Quantitative Measurements of Enzyme Kinetics by Dissolution Dynamic Nuclear Polarization Miclet E, Abergel D, Bornet A, Milani J, Jannin S, Bodenhausen G. Toward Quantitative Measurements of Enzyme Kinetics by Dissolution Dynamic Nuclear Polarization. The Journal of Physical Chemistry Letters. 2014;5(19):3290-5. http://dx.doi.org/10.1021/jz501411d
nmrlearner News from NMR blogs 0 06-03-2015 11:04 PM
L-band Overhauser dynamic nuclear polarization
From The DNP-NMR Blog: L-band Overhauser dynamic nuclear polarization I must have missed that article from 2010, describing L-Band ODNP experiments. This actually looks like a very nice setup that could be used for teaching purposes. Garcia, S., et al., L-band Overhauser dynamic nuclear polarization. J Magn Reson, 2010. 203(1): p. 138-43.
nmrlearner News from NMR blogs 0 12-03-2014 04:05 PM
Quantitative cw Overhauser effect dynamic nuclear polarization for the analysis of local water dynamics
From The DNP-NMR Blog: Quantitative cw Overhauser effect dynamic nuclear polarization for the analysis of local water dynamics Franck, J.M., et al., Quantitative cw Overhauser effect dynamic nuclear polarization for the analysis of local water dynamics. Prog Nucl Magn Reson Spectrosc, 2013. 74(0): p. 33-56. http://www.ncbi.nlm.nih.gov/pubmed/24083461
nmrlearner News from NMR blogs 0 11-21-2013 01:14 AM
Overhauser dynamic nuclear polarization-enhanced NMR relaxometry
From The DNP-NMR Blog: Overhauser dynamic nuclear polarization-enhanced NMR relaxometry Franck, J.M., R. Kausik, and S. Han, Overhauser Dynamic Nuclear Polarization-Enhanced NMR Relaxometry. Microporous Mesoporous Mater, 2013. 178(0): p. 113-118. http://www.ncbi.nlm.nih.gov/pubmed/23837010
nmrlearner News from NMR blogs 0 11-21-2013 01:14 AM
Quantitative cw Overhauser Dynamic Nuclear Polarization for the Analysis of Local Water Dynamics
Quantitative cw Overhauser Dynamic Nuclear Polarization for the Analysis of Local Water Dynamics Publication date: Available online 4 July 2013 Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br> Author(s): John M. Franck , Anna Pavlova , John A. Scott , Songi Han</br> Liquid state Overhauser Effect Dynamic Nuclear Polarization (ODNP) has experienced a recent resurgence of interest. The ODNP technique described here relies on the double resonance of electron spin resonance (ESR) at the most common, i.e. X-band (~ 10 GHz), frequency and 1H nuclear...
nmrlearner Journal club 0 07-05-2013 08:03 AM
Quantitative dynamic nuclear polarization-NMR on blood plasma for assays of drug meta
Quantitative dynamic nuclear polarization-NMR on blood plasma for assays of drug metabolism. Related Articles Quantitative dynamic nuclear polarization-NMR on blood plasma for assays of drug metabolism. NMR Biomed. 2010 Sep 22; Authors: Lerche MH, Meier S, Jensen PR, Hustvedt SO, Karlsson M, Duus JO, Ardenkjær-Larsen JH Analytical platforms for the fast detection, identification and quantification of circulating drugs with a narrow therapeutic range are vital in clinical pharmacology. As a result of low drug concentrations, analytical tools...
nmrlearner Journal club 0 09-24-2010 04:57 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 12:45 AM.


Map