BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 05-06-2019, 04:47 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,786
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Proton polarization enhancement of up to 150 with dynamic nuclear polarization of plasma-treated glucose powder #DNPNMR

From The DNP-NMR Blog:

Proton polarization enhancement of up to 150 with dynamic nuclear polarization of plasma-treated glucose powder #DNPNMR

Katz, Itai, Akiva Feintuch, Raanan Carmieli, and Aharon Blank. “Proton Polarization Enhancement of up to 150 with Dynamic Nuclear Polarization of Plasma-Treated Glucose Powder.” Solid State Nuclear Magnetic Resonance 100 (August 2019): 26–35.


https://doi.org/10.1016/j.ssnmr.2019.03.003.


Dynamic nuclear polarization (DNP) for the enhancement of the NMR signals of specific metabolites has recently found applications in the context of magnetic resonance imaging (MRI). Currently, DNP signal enhancement is implemented in clinical systems through the use of exogenous stable organic free radicals, known as polarization agents (PAs), mixed in a solution with the metabolite of interest. These PAs are medically undesirable and thus must be filtered out prior to patient injection - a task that involves considerable technical complexity and consumes valuable time during which the polarization decays. Here, we aim to demonstrate DNP enhancements large enough for clinical relevance using a process free of exogenous PAs. This is achieved by processing (soft grinding) the metabolite in its solid form and subsequently exposing it to plasma in a dilute atmosphere to produce chemically-unstable free radicals (herein referred to as electrical-discharge-induced radicals EDIRs) within the powder. These samples are then subjected to the normal DNP procedure of microwave irradiation while placed under a high static magnetic field, and their NMR signal is measured to quantify the enhancement of the protons’ signal in the solid. Proton signal enhancements (measured as the ratio of the NMR signal with microwave irradiation to the NMR signal without microwave irradiation) of up to 150 are demonstrated in glucose. Upon fast dissolution, the free radicals are annihilated, leaving the sample in its original chemical composition (which is safe for clinical use) without any need for filtration and cumbersome quality control procedures. We thus conclude that EDIRs are found to be highly efficient in providing DNP enhancement levels that are on par with those achieved with the exogenous PAs, while being safe for clinical use. This opens up the possibility of applying our method to clinical scenarios with minimal risks and lower costs per procedure.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Electron decoupling with cross polarization and dynamic nuclear polarization below 6 K #DNPNMR
From The DNP-NMR Blog: Electron decoupling with cross polarization and dynamic nuclear polarization below 6 K #DNPNMR Sesti, Erika L., Edward P. Saliba, Nicholas Alaniva, and Alexander B. Barnes. “Electron Decoupling with Cross Polarization and Dynamic Nuclear Polarization below 6 K.” Journal of Magnetic Resonance 295 (October 2018): 1–5. https://doi.org/10.1016/j.jmr.2018.07.016.
nmrlearner News from NMR blogs 0 03-24-2019 10:41 PM
Proton and Carbon-13 Dynamic Nuclear Polarization of Methylated ?-Cyclodextrins #DNPNMR
From The DNP-NMR Blog: Proton and Carbon-13 Dynamic Nuclear Polarization of Methylated ?-Cyclodextrins #DNPNMR Caracciolo, F., et al., Proton and Carbon-13 Dynamic Nuclear Polarization of Methylated ?-Cyclodextrins. The Journal of Physical Chemistry B, 2018. 122(6): p. 1836-1845. https://doi.org/10.1021/acs.jpcb.7b11950
nmrlearner News from NMR blogs 0 03-02-2018 03:20 PM
Dynamic Nuclear Polarization Signal Enhancement with High-Affinity Biradical Tags #DNPNMR
From The DNP-NMR Blog: Dynamic Nuclear Polarization Signal Enhancement with High-Affinity Biradical Tags #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Rogawski, R., et al., Dynamic Nuclear Polarization Signal Enhancement with High-Affinity Biradical Tags. The Journal of Physical Chemistry B, 2017. 121(6): p. 1169-1175. https://www.ncbi.nlm.nih.gov/pubmed/28099013
nmrlearner News from NMR blogs 0 01-05-2018 07:20 PM
Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR #DNPNMR
From The DNP-NMR Blog: Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Lilly Thankamony, A.S., et al., Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR. Prog Nucl Magn Reson Spectrosc, 2017. 102-103(Supplement C): p. 120-195. https://www.ncbi.nlm.nih.gov/pubmed/29157490
nmrlearner News from NMR blogs 0 11-30-2017 01:10 AM
T1 - Dynamic Nuclear Polarization Signal Enhancement with High-Affinity Biradical Tags #DNPNMR
From The DNP-NMR Blog: T1 - Dynamic Nuclear Polarization Signal Enhancement with High-Affinity Biradical Tags #DNPNMR Rivkah Rogawski, Ivan V. Sergeyev, Yongjun Li, M. Francesca Ottaviani, Virginia Cornish, and Ann E. McDermott The Journal of Physical Chemistry B 2017 121 (6), 1169-1175 http://dx.doi.org/10.1021/acs.jpcb.6b09021
nmrlearner News from NMR blogs 0 05-19-2017 04:40 PM
Dynamic Nuclear Polarization Signal Enhancement with High-Affinity Biradical Tags #DNPNMR
From The DNP-NMR Blog: Dynamic Nuclear Polarization Signal Enhancement with High-Affinity Biradical Tags #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Rogawski, R., et al., Dynamic Nuclear Polarization Signal Enhancement with High-Affinity Biradical Tags. The Journal of Physical Chemistry B, 2017. 121(6): p. 1169-1175. http://dx.doi.org/10.1021/acs.jpcb.6b09021
nmrlearner News from NMR blogs 0 03-20-2017 05:16 PM
Phenylazide Hybrid-Silica - Polarization Platform for Dynamic Nuclear Polarization at Cryogenic Temperatures #DNPNMR
From The DNP-NMR Blog: Phenylazide Hybrid-Silica - Polarization Platform for Dynamic Nuclear Polarization at Cryogenic Temperatures #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Grüning, W.R., et al., Phenylazide Hybrid-Silica - Polarization Platform for Dynamic Nuclear Polarization at Cryogenic Temperatures. Helvetica Chimica Acta, 2016: p. n/a-n/a. http://dx.doi.org/10.1002/hlca.201600122
nmrlearner News from NMR blogs 0 11-19-2016 08:35 PM
Silica materials with wall-embedded nitroxides provide efficient polarization matrices for dynamic nuclear polarization NMR #DNPNMR
From The DNP-NMR Blog: Silica materials with wall-embedded nitroxides provide efficient polarization matrices for dynamic nuclear polarization NMR #DNPNMR Besson, E., et al., Silica materials with wall-embedded nitroxides provide efficient polarization matrices for dynamic nuclear polarization NMR. Chem Commun (Camb), 2016. 52(32): p. 5531-3. http://www.ncbi.nlm.nih.gov/pubmed/27020483
nmrlearner News from NMR blogs 0 08-17-2016 11:34 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:16 AM.


Map