BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 04-20-2018, 02:17 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Primary Transfer Step in the Light-Driven Ion Pump Bacteriorhodopsin: An Irreversible U-Turn Revealed by Dynamic Nuclear Polarization-Enhanced Magic Angle Spinning NMR #DNPNMR

From The DNP-NMR Blog:

Primary Transfer Step in the Light-Driven Ion Pump Bacteriorhodopsin: An Irreversible U-Turn Revealed by Dynamic Nuclear Polarization-Enhanced Magic Angle Spinning NMR #DNPNMR

Ni, Q.Z., et al., Primary Transfer Step in the Light-Driven Ion Pump Bacteriorhodopsin: An Irreversible U-Turn Revealed by Dynamic Nuclear Polarization-Enhanced Magic Angle Spinning NMR. J. Am. Chem. Soc., 2018. 140(11): p. 4085-4091.


https://www.ncbi.nlm.nih.gov/pubmed/29489362


Despite much attention, the path of the highly consequential primary proton transfer in the light-driven ion pump bacteriorhodopsin (bR) remains mysterious. Here we use DNP-enhanced magic angle spinning (MAS) NMR to study critical elements of the active site just before the Schiff base (SB) deprotonates (in the L intermediate), immediately after the SB has deprotonated and Asp85 has become protonated (in the Mo intermediate), and just after the SB has reprotonated and Asp96 has deprotonated (in the N intermediate). An essential feature that made these experiments possible is the 75-fold signal enhancement through DNP. (15)N(SB)-(1)H correlations reveal that the newly deprotonated SB is accepting a hydrogen bond from an alcohol and (13)C-(13)C correlations show that Asp85 draws close to Thr89 before the primary proton transfer. Concurrently, (15)N-(13)C correlations between the SB and Asp85 show that helices C and G draw closer together just prior to the proton transfer and relax thereafter. Together, these results indicate that Thr89 serves to relay the SB proton to Asp85 and that creating this pathway involves rapprochement between the C and G helices as well as chromophore torsion.


p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica}

Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Dynamic nuclear polarization enhanced biomolecular NMR spectroscopy at high magnetic field with fast magic-angle spinning.
Dynamic nuclear polarization enhanced biomolecular NMR spectroscopy at high magnetic field with fast magic-angle spinning. Dynamic nuclear polarization enhanced biomolecular NMR spectroscopy at high magnetic field with fast magic-angle spinning. Angew Chem Int Ed Engl. 2018 Mar 22;: Authors: Jaudzems K, Bertarello A, Chaudhari SR, Pica A, Cala-De Paepe D, Barbet-Massin E, Pell AJ, Akopjana I, Kotelovica S, Gajan D, Ouari O, Tars K, Pintacuda G, Lesage A Abstract Dynamic nuclear polarization (DNP) represents a powerful way to...
nmrlearner Journal club 0 03-23-2018 11:18 AM
PrimaryTransfer Step in the Light-Driven Ion PumpBacteriorhodopsin: An Irreversible U-Turn Revealed by DynamicNuclear Polarization-Enhanced Magic Angle Spinning NMR
PrimaryTransfer Step in the Light-Driven Ion PumpBacteriorhodopsin: An Irreversible U-Turn Revealed by DynamicNuclear Polarization-Enhanced Magic Angle Spinning NMR Qing Zhe Ni, Thach V. Can, Eugenio Daviso, Marina Belenky, Robert G. Griffin and Judith Herzfeld https://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/jacs.8b00022/20180312/images/medium/ja-2018-00022t_0006.gif Journal of the American Chemical Society DOI: 10.1021/jacs.8b00022 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner Journal club 0 03-13-2018 04:24 AM
Instrumentation for cryogenic magic angle spinning dynamic nuclear polarization using 90L of liquid nitrogen per day #DNPNMR
From The DNP-NMR Blog: Instrumentation for cryogenic magic angle spinning dynamic nuclear polarization using 90L of liquid nitrogen per day #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Albert, B.J., et al., Instrumentation for cryogenic magic angle spinning dynamic nuclear polarization using 90L of liquid nitrogen per day. J. Magn. Reson., 2017. 283(Supplement C): p. 71-78. https://doi.org/10.1016/j.jmr.2017.08.014
nmrlearner News from NMR blogs 0 12-20-2017 10:12 PM
Directly vs Indirectly Enhanced 13C in Dynamic Nuclear Polarization Magic Angle Spinning NMR Experiments of Nonionic Surfactant Systems
From The DNP-NMR Blog: Directly vs Indirectly Enhanced 13C in Dynamic Nuclear Polarization Magic Angle Spinning NMR Experiments of Nonionic Surfactant Systems p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Hoffmann, M.M., et al., Directly vs Indirectly Enhanced 13C in Dynamic Nuclear Polarization Magic Angle Spinning NMR Experiments of Nonionic Surfactant Systems. The Journal of Physical Chemistry C, 2017. 121(4): p. 2418-2427. ...
nmrlearner News from NMR blogs 0 04-07-2017 02:45 PM
Dynamic nuclear polarization at 40 kHz magic angle spinning #DNPNMR
From The DNP-NMR Blog: Dynamic nuclear polarization at 40 kHz magic angle spinning #DNPNMR Chaudhari, S.R., et al., Dynamic nuclear polarization at 40 kHz magic angle spinning. Phys Chem Chem Phys, 2016. 18(15): p. 10616-22. http://www.ncbi.nlm.nih.gov/pubmed/27035630
nmrlearner News from NMR blogs 0 08-23-2016 01:02 AM
Low-temperature dynamic nuclear polarization with helium-cooled samples and nitrogen-driven magic-angle spinning
From The DNP-NMR Blog: Low-temperature dynamic nuclear polarization with helium-cooled samples and nitrogen-driven magic-angle spinning Thurber, K. and R. Tycko, Low-temperature dynamic nuclear polarization with helium-cooled samples and nitrogen-driven magic-angle spinning. J Magn Reson, 2016. 264: p. 99-106. http://www.ncbi.nlm.nih.gov/pubmed/26920835
nmrlearner News from NMR blogs 0 04-11-2016 07:16 PM
Low-temperature dynamic nuclear polarization with helium-cooled samples and nitrogen-driven magic-angle spinning
Low-temperature dynamic nuclear polarization with helium-cooled samples and nitrogen-driven magic-angle spinning Publication date: March 2016 Source:Journal of Magnetic Resonance, Volume 264</br> Author(s): Kent Thurber, Robert Tycko</br> We describe novel instrumentation for low-temperature solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS), focusing on aspects of this instrumentation that have not been described in detail in previous publications. We characterize the performance of an extended...
nmrlearner Journal club 0 02-24-2016 01:30 AM
Theoretical Aspects of Magic Angle Spinning - Dynamic Nuclear Polarization
From The DNP-NMR Blog: Theoretical Aspects of Magic Angle Spinning - Dynamic Nuclear Polarization Mentink-Vigier, F., et al., Theoretical Aspects of Magic Angle Spinning - Dynamic Nuclear Polarization. J. Magn. Reson., 2015. http://www.sciencedirect.com/science/article/pii/S1090780715001500
nmrlearner News from NMR blogs 0 07-27-2015 10:41 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:02 AM.


Map