BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 09-23-2013, 09:41 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Population transfer for signal enhancement in pulsed EPR experiments on half integer high spin systems

From The DNP-NMR Blog:

Population transfer for signal enhancement in pulsed EPR experiments on half integer high spin systems


Kaminker, I., et al., Population transfer for signal enhancement in pulsed EPR experiments on half integer high spin systems. Phys Chem Chem Phys, 2009. 11(31): p. 6799-806.


http://www.ncbi.nlm.nih.gov/pubmed/19639154


High resolution pulse EPR techniques applied to half integer high spin systems, such as Mn(2+) (S = 5/2), usually focus only on the central |-1/2--> |1/2 transition. The reason is that at high fields, where the zero field splitting is considerably smaller than the Zeeman interaction, the spectrum of this transition is intense and narrow. However, because the experiments are carried out at low temperatures, the low lying levels are heavily populated and the signal of the central transition is nevertheless diminished. This, in turn affects the sensitivity of the pulse EPR technique applied. A transfer of populations from the lower lying levels, which for Mn(2+) are the |-3/2 and |-5/2 levels, to the |-1/2 level will therefore increase the sensitivity. Here we describe such an experiment, where a rapid magnetic field sweep over the |-3/2--> |-1/2 sub-spectrum is carried out, concomitantly with a low power microwave (mw) irradiation, which results in population inversion. After this sweep any pulsed EPR sequence can be applied to the central transition that now has a population difference that deviates from the equilibrium value. The feasibility of the experiment is demonstrated at W-band (95 GHz) on Mn(2+) doped in MgO for echo-detected EPR measurements and the dependence of the signal enhancement on the rate and range of the magnetic field sweep and on the mw power is described. The results are then accounted for theoretically by considering a simple fictitious spin 1/2 system. In addition, preliminary enhanced (55)Mn pulse ENDOR electron nuclear double resonance (ENDOR) spectra are presented.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Covariance spectroscopy with a non-uniform and consecutive acquisition scheme for signal enhancement of the NMR experiments
Covariance spectroscopy with a non-uniform and consecutive acquisition scheme for signal enhancement of the NMR experiments Publication year: 2012 Source:Journal of Magnetic Resonance</br> Yixuan Li, Qiang Wang, Zhengfeng Zhang, Jun Yang, Bingwen Hu, Qun Chen, Isao Noda, Feng Deng</br> Two-dimensional covariance (COV2D) spectroscopy with non-uniform and consecutive acquisition (NUCA) scheme is introduced. This NUCA-COV2D method allows the number of t1 points to be reduced by a factor of 1.5~3 without any broadening of the linewidth. Furthermore, the...
nmrlearner Journal club 0 03-09-2012 09:16 AM
Covariance spectroscopy with a non-uniform and consecutive acquisition scheme for signal enhancement of the NMR experiments
Covariance spectroscopy with a non-uniform and consecutive acquisition scheme for signal enhancement of the NMR experiments Publication year: 2012 Source: Journal of Magnetic Resonance, Available online 6 March 2012</br> Yixuan*Li, Qiang*Wang, Zhengfeng*Zhang, Jun*Yang, Bingwen*Hu, ...</br> Two-dimensional covariance (COV2D) spectroscopy with non-uniform and consecutive acquisition (NUCA) scheme is introduced. This NUCA-COV2D method allows the number of t1points to be reduced by a factor of 1.5~3 without any broadening of the linewidth. Furthermore, the signal-to-noise ratio (S/N) can...
nmrlearner Journal club 0 03-08-2012 08:46 AM
[NMR paper] Low temperature solid-state NMR experiments of half-integer quadrupolar nuclides: cav
Low temperature solid-state NMR experiments of half-integer quadrupolar nuclides: caveats and data analysis. Related Articles Low temperature solid-state NMR experiments of half-integer quadrupolar nuclides: caveats and data analysis. J Magn Reson. 2004 May;168(1):66-74 Authors: Lipton AS, Heck RW, Sears JA, Ellis PD Solid-state NMR spectroscopy of half-integer quadrupolar nuclides has received a lot of interest recently with the advent of new methodologies and higher magnetic fields. We present here the extension of our previous low...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[Stan NMR blog] Half-integer nuclei?
Half-integer nuclei? A query about the use/abuse of the term "high half-integer spin" in NMR Source: Stan blog library
nmrlearner News from NMR blogs 0 11-23-2010 07:10 AM
Signal enhancement in protein NMR using the spin-noise tuning optimum
Signal enhancement in protein NMR using the spin-noise tuning optimum Abstract We have assessed the potential of an alternative probe tuning strategy based on the spin-noise response for application in common high-resolution multi-dimensional biomolecular NMR experiments with water signal suppression on aqueous and salty samples. The method requires the adjustment of the optimal tuning condition, which may be offset by several 100 kHz from the conventional tuning settings using the noise response of the water protons as an indicator. Although the radio frequency-pulse durations are...
nmrlearner Journal club 0 10-09-2010 03:03 AM
Signal enhancement in protein NMR using the spin-noise tuning optimum.
Signal enhancement in protein NMR using the spin-noise tuning optimum. Signal enhancement in protein NMR using the spin-noise tuning optimum. J Biomol NMR. 2010 Oct 6; Authors: Nausner M, Goger M, Bendet-Taicher E, Schlagnitweit J, Jerschow A, Müller N We have assessed the potential of an alternative probe tuning strategy based on the spin-noise response for application in common high-resolution multi-dimensional biomolecular NMR experiments with water signal suppression on aqueous and salty samples. The method requires the adjustment of the...
nmrlearner Journal club 0 10-07-2010 10:33 AM
[Stan NMR blog] Half-integer nuclei?
Half-integer nuclei? A query about the use/abuse of the term "high half-integer spin" in NMR More...
nmrlearner News from NMR blogs 0 08-21-2010 05:42 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:00 PM.


Map