Maciejko, Jakob, Jagdeep Kaur, Johanna Becker-Baldus, and Clemens Glaubitz. “Photocycle-Dependent Conformational Changes in the Proteorhodopsin Cross-Protomer Asp–His–Trp Triad Revealed by DNP-Enhanced MAS-NMR.” Proceedings of the National Academy of Sciences 116, no. 17 (April 23, 2019): 8342–49. https://doi.org/10.1073/pnas.1817665116.
Proteorhodopsin (PR) is a highly abundant, pentameric, light-driven proton pump. Proton transfer is linked to a canonical photocycle typical for microbial ion pumps. Although the PR monomer is able to undergo a full photocycle, the question arises whether the pentameric complex formed in the membrane via specific cross-protomer interactions plays a role in its functional mechanism. Here, we use dynamic nuclear polarization (DNP)-enhanced solid-state magic-angle spinning (MAS) NMR in combination with light-induced cryotrapping of photointermediates to address this topic. The highly conserved residue H75 is located at the protomer interface. We show that it switches from the (?)- to the (?)-tautomer and changes its ring orientation in the M state. It couples to W34 across the oligomerization interface based on specific His/Trp ring orientations while stabilizing the pKa of the primary proton acceptor D97 within the same protomer. We further show that specific W34 mutations have a drastic effect on D97 and proton transfer mediated through H75. The residue H75 defines a cross-protomer Asp–His–Trp triad, which potentially serves as a pH-dependent regulator for proton transfer. Our data represent light-dependent, functionally relevant cross talk between protomers of a microbial rhodopsin homo-oligomer.
[NMR paper] Photocycle-dependent conformational changes in the proteorhodopsin cross-protomer Asp-His-Trp triad revealed by DNP-enhanced MAS-NMR.
Photocycle-dependent conformational changes in the proteorhodopsin cross-protomer Asp-His-Trp triad revealed by DNP-enhanced MAS-NMR.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-custom-pnas_full_free.gif http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/https:--www.ncbi.nlm.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.png Related Articles Photocycle-dependent conformational changes in the proteorhodopsin cross-protomer Asp-His-Trp triad revealed by DNP-enhanced MAS-NMR.
...
nmrlearner
Journal club
0
04-01-2020 12:01 AM
Photocycle-dependent conformational changes in the proteorhodopsin cross-protomer Asp-His-Trp triad revealed by DNP-enhanced MAS-NMR [Biophysics and Computational Biology]
Photocycle-dependent conformational changes in the proteorhodopsin cross-protomer Asp-His-Trp triad revealed by DNP-enhanced MAS-NMR
Jakob Maciejko, Jagdeep Kaur, Johanna Becker-Baldus, Clemens Glaubitz...
Date: 2019-04-23
Proteorhodopsin (PR) is a highly abundant, pentameric, light-driven proton pump. Proton transfer is linked to a canonical photocycle typical for microbial ion pumps. Although the PR monomer is able to undergo a full photocycle, the question arises whether the pentameric complex formed in the membrane via specific cross-protomer interactions plays... Read More
...
nmrlearner
Journal club
0
04-23-2019 07:54 PM
Chromophore Distortions in Photointermediates of Proteorhodopsin Visualized by Dynamic Nuclear Polarization-Enhanced Solid-State NMR #DNPNMR #NMR #SSNMR
From The DNP-NMR Blog:
Chromophore Distortions in Photointermediates of Proteorhodopsin Visualized by Dynamic Nuclear Polarization-Enhanced Solid-State NMR #DNPNMR #NMR #SSNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Mehler, M., et al., Chromophore Distortions in Photointermediates of Proteorhodopsin Visualized by Dynamic Nuclear Polarization-Enhanced Solid-State NMR. J. Am. Chem. Soc., 2017. 139(45): p. 16143-16153.
https://www.ncbi.nlm.nih.gov/pubmed/29027800
Visualizing Specific Cross-Protomer Interactions in the Homo-Oligomeric Membrane Protein Proteorhodopsin by Dynamic-Nuclear-Polarization-Enhanced Solid-State NMR
Visualizing Specific Cross-Protomer Interactions in the Homo-Oligomeric Membrane Protein Proteorhodopsin by Dynamic-Nuclear-Polarization-Enhanced Solid-State NMR
Jakob Maciejko, Michaela Mehler, Jagdeep Kaur, Tobias Lieblein, Nina Morgner, Olivier Ouari, Paul Tordo, Johanna Becker-Baldus and Clemens Glaubitz
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/jacs.5b03606/20150713/images/medium/ja-2015-03606j_0008.gif
Journal of the American Chemical Society
DOI: 10.1021/jacs.5b03606
...
nmrlearner
Journal club
0
07-14-2015 02:59 AM
[NMR paper] Visualizing specific Cross-Protomer Interactions in the Homo-Oligomeric Membrane Protein Proteorhodopsin by DNP-enhanced Solid-state NMR.
Visualizing specific Cross-Protomer Interactions in the Homo-Oligomeric Membrane Protein Proteorhodopsin by DNP-enhanced Solid-state NMR.
Visualizing specific Cross-Protomer Interactions in the Homo-Oligomeric Membrane Protein Proteorhodopsin by DNP-enhanced Solid-state NMR.
J Am Chem Soc. 2015 Jun 23;
Authors: Maciejko J, Mehler M, Kaur J, Lieblein T, Morgner N, Ouari O, Tordo P, Becker-Baldus J, Glaubitz C
Abstract
Membrane proteins often form oligomeric complexes within the lipid bilayer but factors controlling their assembly...
nmrlearner
Journal club
0
06-24-2015 01:08 PM
The EF Loop in Green Proteorhodopsin Affects Conformation and*Photocycle dynamics
From The DNP-NMR Blog:
The EF Loop in Green Proteorhodopsin Affects Conformation and*Photocycle dynamics
Mehler, M., et al., The EF Loop in Green Proteorhodopsin Affects Conformation and Photocycle dynamics. Biophysical Journal, 2013. 105(2): p. 385-397.
http://dx.doi.org/10.1016/j.bpj.2013.06.014