BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 04-15-2016, 05:06 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default The phenomenology of optically pumped 13C NMR in diamond at 7.05 T: Room temperature polarization, orientation dependence, and the effect of defect concentration on polarization dynamics

From The DNP-NMR Blog:

The phenomenology of optically pumped 13C NMR in diamond at 7.05 T: Room temperature polarization, orientation dependence, and the effect of defect concentration on polarization dynamics


Scott, E., M. Drake, and J.A. Reimer, The phenomenology of optically pumped 13C NMR in diamond at 7.05 T: Room temperature polarization, orientation dependence, and the effect of defect concentration on polarization dynamics. J. Magn. Reson., 2016. 264: p. 154-162.


http://www.sciencedirect.com/science...90780716000252


Room temperature optical illumination of NV- imbibed single crystal diamonds with a 532 nm laser produces 13C polarization enhancements up to 200 times greater than that of the thermal equilibrium value at 7.05 T. We report high field NV- mediated 13C polarization as a function of the number and type (NV- and P1) of defects in commercially available diamonds. Surprisingly, both positive and negative 13C polarizations are observed depending on the orientation of the crystal with respect to the external magnetic field and the electric field vector of the optical illumination. The data reported herein cannot be explained by a previously proposed mechanism.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Solid effect DNP polarization dynamics in a system of many spins
From The DNP-NMR Blog: Solid effect DNP polarization dynamics in a system of many spins Wisniewski, D., et al., Solid effect DNP polarization dynamics in a system of many spins. J Magn Reson, 2016. 264: p. 30-8. http://www.ncbi.nlm.nih.gov/pubmed/26920828
nmrlearner News from NMR blogs 0 04-06-2016 10:29 PM
Solid-State Dynamic Nuclear Polarization at 9.4 and 18.8 T from 100 K to Room Temperature
From The DNP-NMR Blog: Solid-State Dynamic Nuclear Polarization at 9.4 and 18.8 T from 100 K to Room Temperature This is an incredible article. It shows the temperature dependence of the DNP enhancement over a wide temperature regime. Most importantly it shows that at room temperature still an enhancement of 15-20 can be achieved. Just a few years ago the common believe was that solid-state MAS-DNP experiments have to be performed at 90 K or below. This article clearly demonstrates that there is still so much room for improvements of DNP. I think the most exciting moments in DNP are...
nmrlearner News from NMR blogs 0 03-04-2016 10:23 PM
Solid-State Dynamic Nuclear Polarization at 9.4 and 18.8 T from 100 K to Room Temperature
From The DNP-NMR Blog: Solid-State Dynamic Nuclear Polarization at 9.4 and 18.8 T from 100 K to Room Temperature Lelli, M., et al., Solid-State Dynamic Nuclear Polarization at 9.4 and 18.8 T from 100 K to Room Temperature. J Am Chem Soc, 2015. 137(46): p. 14558-61. http://www.ncbi.nlm.nih.gov/pubmed/26555676
nmrlearner News from NMR blogs 0 12-07-2015 06:38 PM
The magnetic field dependence of cross-effect dynamic nuclear polarization under magic angle spinning
From The DNP-NMR Blog: The magnetic field dependence of cross-effect dynamic nuclear polarization under magic angle spinning Mance, D., et al., The magnetic field dependence of cross-effect dynamic nuclear polarization under magic angle spinning. J. Chem. Phys., 2015. 142(23): p. 234201. doi:http://dx.doi.org/10.1063/1.4922219
nmrlearner News from NMR blogs 0 07-06-2015 04:35 PM
Proton polarization in photo-excited aromatic molecule at room temperature enhanced by intense optical source and temperature control
From The DNP-NMR Blog: Proton polarization in photo-excited aromatic molecule at room temperature enhanced by intense optical source and temperature control Sakaguchi, S., et al., Proton polarization in photo-excited aromatic molecule at room temperature enhanced by intense optical source and temperature control. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013. 317(0): p. 679-684. http://www.sciencedirect.com/science/article/pii/S0168583X13008872
nmrlearner News from NMR blogs 0 01-23-2014 01:37 AM
Quantitative cw Overhauser effect dynamic nuclear polarization for the analysis of local water dynamics
From The DNP-NMR Blog: Quantitative cw Overhauser effect dynamic nuclear polarization for the analysis of local water dynamics Franck, J.M., et al., Quantitative cw Overhauser effect dynamic nuclear polarization for the analysis of local water dynamics. Prog Nucl Magn Reson Spectrosc, 2013. 74(0): p. 33-56. http://www.ncbi.nlm.nih.gov/pubmed/24083461
nmrlearner News from NMR blogs 0 11-21-2013 01:14 AM
Proton polarization in photo-excited aromatic molecule at room temperature enhanced by intense optical source and temperature control
From The DNP-NMR Blog: Proton polarization in photo-excited aromatic molecule at room temperature enhanced by intense optical source and temperature control Sakaguchi, S., et al., Proton polarization in photo-excited aromatic molecule at room temperature enhanced by intense optical source and temperature control. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013(0). http://www.sciencedirect.com/science/article/pii/S0168583X13008872
nmrlearner News from NMR blogs 0 11-21-2013 01:14 AM
Temperature dependence of high field 13C dynamic nuclear polarization processes with trityl radicals below 35 Kelvin
From The DNP-NMR Blog: Temperature dependence of high field 13C dynamic nuclear polarization processes with trityl radicals below 35 Kelvin Walker, S.A., et al., Temperature dependence of high field 13C dynamic nuclear polarization processes with trityl radicals below 35 Kelvin. Phys. Chem. Chem. Phys., 2013. http://dx.doi.org/10.1039/C3CP51628H
nmrlearner News from NMR blogs 0 09-06-2013 06:52 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:08 PM.


Map