BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rating: Thread Rating: 1 votes, 5.00 average. Display Modes
  #1  
Old 11-19-2010, 06:22 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,808
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default The Phase of an NMR Spectrum

The Phase of an NMR Spectrum

Most students know that the phase of an NMR spectrum has to do with the degree to which the NMR resonances are above or below the baseline of the spectrum (i.e. the amount of absorption and dispersion character). Most students have also learned that the phase of a periodic time domain function depends only on the value of the function at time zero. Thus, the only difference between a cosine and a sine function is where the function starts at time zero. A sine is said to be 90° out of phase with respect to a cosine. Many students do not understand the connection between the phase of their NMR spectrum and the phase of the periodic time domain function giving rise to their spectrum by way of a Fourier transform. The figure below is an attempt to make the connection. The left-hand portion of the figure shows equilibrium magnetization vectors being rotated by radio frequency pulses. 90° pulses along the x, y, -x and -y axes rotate the z magnetization vector to the -y, x, y and -x axes of the rotating frame, respectively according to the right-hand screw rule. After the pulse, the magnetization vector rotates in the rotating frame of reference at a frequency equal to the difference between the transmitter frequency and the frequency of the NMR resonance. In the figure, the magnetization is assumed to be rotating anti-clockwise representing an NMR resonance with a positive frequency with respect to the transmitter frequency. The NMR spectrometer measures the time dependent voltages on two of the four orthogonal axes of the rotating frame separated by 90° (quadrature detection). The time dependent voltages are proportional to the amount of magnetization on the axis as a function of time. One of the two time dependent voltages is called the "real" signal and the other is called the "imaginary" signal. Together these two signals make up the complex free induction decay (FID) which is Fourier transformed to produce the NMR spectrum. In the figure, the -y(t) voltage is the real FID and the x(t) voltage is the imaginary FID. The figure shows representations of the real and imaginary FIDs after the delivery of pulses along each of the orthogonal axes. Note that the phases of the real and imaginary FIDs depend on the pulse delivered. For example, after a 90°x pulse, the magnetization resides on the -y axis. The real FID (along the -y axis) starts at a maximum (cosine) and the imaginary FID (along the x axis) starts at zero (sine) and increases as the magnetization vector rotates anti-clockwise. The Fourier transform of the complex FID produces a real spectrum (typically the one displayed to the user) and an imaginary spectrum (typically not displayed to the user). Note that the degree of absorption vs. dispersion character in the spectrum depends on the phase of the FID signals. If an NMR spectrum is not in phase, perhaps due to a receiver dead time problem, it can be corrected after the collection of the data by calculating the phase angles needed to put the real spectrum enitirely in absorption mode and the imaginary spectrum entirely in dispersion mode.



Source: University of Ottawa NMR Facility Blog
Reply With Quote


1 out of 1 members found this post helpful. Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMRpipe Yahoo group] Re: phase problem with trosy-hncacb
Re: phase problem with trosy-hncacb It is best not use automated baseline correction before at least two dimensions have been transformed. Same with LP ... also, best not to use LP until all the More...
NMRpipe Yahoo group news News from other NMR forums 0 05-27-2011 10:40 AM
[NMRpipe Yahoo group] Fwd: phase problem with trosy-hncacb
Fwd: phase problem with trosy-hncacb Dear All: I have this strange phase problem with trosy-hncacb collected on a bruker machine. the HC and HN projection looks good. However, Using the phase More...
NMRpipe Yahoo group news News from other NMR forums 0 05-27-2011 10:40 AM
[Question from NMRWiki Q&A forum] same parameters but difference in phase why?
same parameters but difference in phase why? hi, though this question seems to be easy for you but i am new for this software and to this field. Recently, i took silicon spectra in 500mhz(bruker) seems to be good (i.e.one silicon peak and one nmr tubes broad peak) but when i used same parameters for another sample where i got single peak as i expected but nmr tube peak is inverse this time. I just copied previous parameters only why i got such a inverse signal.If anybody know please help me. thank you Check if somebody has answered this question on NMRWiki QA forum
nmrlearner News from other NMR forums 0 03-31-2011 09:21 PM
[NMRpipe Yahoo group] phase problem with trosy-hncacb
phase problem with trosy-hncacb Dear All: I have this strange phase problem with trosy-hncacb collected on a bruker machine. the HC and HN projection looks good. However, Using the phase More...
NMRpipe Yahoo group news News from other NMR forums 0 03-15-2011 05:56 AM
[U. of Ottawa NMR Facility Blog] First-Order Phase Errors
First-Order Phase Errors The phase of a signal in an NMR spectrum is described here and is determined by the axis on which the magnetization vector resides after the observe pulse relative to the receiver. The phase of the spectrum is typically corrected such that the peak in the real spectrum is entirely in absorption mode while that in the imaginary spectrum is entirely in dispersion mode. The correction in phase is referred to as the zero-order phase correction. A zero-order phase correction applies to all peaks in the spectrum regardless of their offset, ?, from resonance. There are...
nmrlearner News from NMR blogs 0 01-18-2011 02:44 AM
[NMR paper] Phospholipid phase transitions as revealed by NMR.
Phospholipid phase transitions as revealed by NMR. Related Articles Phospholipid phase transitions as revealed by NMR. Chem Phys Lipids. 1991 Mar;57(2-3):195-211 Authors: Watts A, Spooner PJ Aqueous dispersions of phospholipids can adopt a range of polymorphic phases which include bilayer and non-bilayer forms. Within the bilayer form, laterally separated phases may be induced as a result of surface electrostatic associations, thermotropic behaviour, lipid-protein interactions or because of molecular mismatch between chemically distinct...
nmrlearner Journal club 0 08-21-2010 11:16 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:13 AM.


Map