BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 07-06-2018, 09:40 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,776
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Paramagnetic metal ion dopants as polarization agents for DNP NMR spectroscopy in inorganic solids #DNPNMR

From The DNP-NMR Blog:

Paramagnetic metal ion dopants as polarization agents for DNP NMR spectroscopy in inorganic solids #DNPNMR

Chakrabrty Tanmoy, Goldin Nir, Feintuch Akiva, Houben Lothar, and Leskes Michal. “Paramagnetic Metal Ion Dopants as Polarization Agents for DNP NMR Spectroscopy in Inorganic Solids.” ChemPhysChem 0, no. ja (May 17, 2018).


https://doi.org/10.1002/cphc.201800462.




Dynamic nuclear polarization (DNP), a technique in which the high electron spin polarization is transferred to surrounding nuclei via microwaves irradiation, equips solid state NMR spectroscopy with unprecedented sensitivity. The most commonly used polarization agents for DNP are nitroxide radicals. However, their applicability to inorganic materials is mostly limited to surface detection. Paramagnetic metal ions were recently introduced as alternatives for nitroxides. Doping inorganic solids with paramagnetic ions can be used to tune material properties and introduces endogenous DNP agents that can potentially provide sensitivity in the particles' bulk and surface. Here we demonstrate the approach by doping Li4Ti5O12 (LTO), an anode material for lithium ion batteries, with paramagnetic ions. By incorporating Gd(III) and Mn(II) in LTO we gain up to 14 fold increase in signal intensity in static 7Li DNP?NMR experiments. These results suggest that doping with paramagnetic ions provides an efficient route for sensitivity enhancement in the bulk of micron size particles.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Improving Sensitivity of Solid-state NMR Spectroscopy by Rational Design of Polarizing Agents for Dynamic Nuclear Polarization #DNPNMR
From The DNP-NMR Blog: Improving Sensitivity of Solid-state NMR Spectroscopy by Rational Design of Polarizing Agents for Dynamic Nuclear Polarization #DNPNMR Kubicki, D.J. and L. Emsley, Improving Sensitivity of Solid-state NMR Spectroscopy by Rational Design of Polarizing Agents for Dynamic Nuclear Polarization. Chimia (Aarau), 2017. 71(4): p. 190-194. https://www.ncbi.nlm.nih.gov/pubmed/28446334
nmrlearner News from NMR blogs 0 05-21-2018 06:16 PM
High-Frequency Dynamic Nuclear Polarization NMR for Solids: Part 1 – An Introduction #DNPNMR
From The DNP-NMR Blog: High-Frequency Dynamic Nuclear Polarization NMR for Solids: Part 1 – An Introduction #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Ha, M. and V.K. Michaelis, High-Frequency Dynamic Nuclear Polarization NMR for Solids: Part 1 – An Introduction, in Modern Magnetic Resonance, G.A. Webb, Editor. 2017, Springer International Publishing: Cham. p. 1-24. https://doi.org/10.1007/978-3-319-28275-6_140-1
nmrlearner News from NMR blogs 0 01-04-2018 08:45 AM
Electron Decoupling with Dynamic Nuclear Polarization in Rotating Solids #DNPNMR
From The DNP-NMR Blog: Electron Decoupling with Dynamic Nuclear Polarization in Rotating Solids #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Saliba, E.P., et al., Electron Decoupling with Dynamic Nuclear Polarization in Rotating Solids. J Am Chem Soc, 2017. 139(18): p. 6310-6313. https://www.ncbi.nlm.nih.gov/pubmed/28429936
nmrlearner News from NMR blogs 0 08-11-2017 08:52 PM
Characterizing Substrate-Surface Interactions on Alumina-Supported Metal Catalysts by Dynamic Nuclear Polarization-Enhanced Double-Resonance NMR Spectroscopy #DNPNMR
From The DNP-NMR Blog: Characterizing Substrate-Surface Interactions on Alumina-Supported Metal Catalysts by Dynamic Nuclear Polarization-Enhanced Double-Resonance NMR Spectroscopy #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Perras, F.A., et al., Characterizing Substrate-Surface Interactions on Alumina-Supported Metal Catalysts by Dynamic Nuclear Polarization-Enhanced Double-Resonance NMR Spectroscopy. J Am Chem Soc, 2017. 139(7): p. 2702-2709. https://www.ncbi.nlm.nih.gov/pubmed/28112506
nmrlearner News from NMR blogs 0 06-13-2017 06:55 AM
A tailored multi-frequency EPR approach to accurately determine the magnetic resonance parameters of dynamic nuclear polarization agents: application to AMUPol #DNPNMR
From The DNP-NMR Blog: A tailored multi-frequency EPR approach to accurately determine the magnetic resonance parameters of dynamic nuclear polarization agents: application to AMUPol #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} This is a very nice article illustrating the importance of understanding the EPR parameters of a polarizing agent used in DNP-NMR spectroscopy. Here the 9, 95 and 275 GHz EPR spectroscopy is used to characterize AMUPol and predict its performance in high-field DNP.
nmrlearner News from NMR blogs 0 06-05-2017 03:59 PM
Correction: Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids #DNPNMR
From The DNP-NMR Blog: Correction: Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Corzilius, B., Correction: Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids. Phys. Chem. Chem. Phys., 2016. 18(42): p. 29643-29643. http://dx.doi.org/10.1039/C6CP90249A
nmrlearner News from NMR blogs 0 12-17-2016 07:18 AM
Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids #DNPNMR
From The DNP-NMR Blog: Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Corzilius, B., Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids. Phys. Chem. Chem. Phys., 2016. 18(39): p. 27190-27204. http://dx.doi.org/10.1039/C6CP04621E
nmrlearner News from NMR blogs 0 11-21-2016 11:02 PM
Selective Host-Guest Interaction between Metal Ions and Metal-Organic Frameworks using Dynamic Nuclear Polarization Enhanced Solid-State NMR Spectroscopy
From The DNP-NMR Blog: Selective Host-Guest Interaction between Metal Ions and Metal-Organic Frameworks using Dynamic Nuclear Polarization Enhanced Solid-State NMR Spectroscopy Guo, Z., et al., Selective Host-Guest Interaction between Metal Ions and Metal-Organic Frameworks using Dynamic Nuclear Polarization Enhanced Solid-State NMR Spectroscopy. Chemistry, 2014: p. n/a-n/a. http://www.ncbi.nlm.nih.gov/pubmed/25297002
nmrlearner News from NMR blogs 0 10-23-2014 05:11 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:57 AM.


Map