Lego, D., et al., Parahydrogen-induced polarization of carboxylic acids: a pilot study of valproic acid and related structures. NMR Biomed, 2014. 27(7): p. 810-6.
Parahydrogen-induced polarization (PHIP) is a promising new tool for medical applications of MR, including MRI. The PHIP technique can be used to transfer high non-Boltzmann polarization, derived from parahydrogen, to isotopes with a low natural abundance or low gyromagnetic ratio (e.g. (13)C), thus improving the signal-to-noise ratio by several orders of magnitude. A few molecules acting as metabolic sensors have already been hyperpolarized with PHIP, but the direct hyperpolarization of drugs used to treat neurological disorders has not been accomplished until now. Here, we report on the first successful hyperpolarization of valproate (valproic acid, VPA), an important and commonly used antiepileptic drug. Hyperpolarization was confirmed by detecting the corresponding signal patterns in the (1)H NMR spectrum. To identify the optimal experimental conditions for the conversion of an appropriate VPA precursor, structurally related molecules with different side chains were analyzed in different solvents using various catalytic systems. The presented results include hyperpolarized (13)C NMR spectra and proton images of related systems, confirming their applicability for MR studies. PHIP-based polarization enhancement may provide a new MR technique to monitor the spatial distribution of valproate in brain tissue and to analyze metabolic pathways after valproate administration.
Parahydrogen-induced polarization of carboxylic acids: a pilot study of valproic acid and related structures
From The DNP-NMR Blog:
Parahydrogen-induced polarization of carboxylic acids: a pilot study of valproic acid and related structures
Lego, D., et al., Parahydrogen-induced polarization of carboxylic acids: a pilot study of valproic acid and related structures. NMR Biomed, 2014. 27(7): p. 810-6.
http://www.ncbi.nlm.nih.gov/pubmed/24812006
Parahydrogen-induced polarization transfer to 19F in perfluorocarbons for 19F NMR spectroscopy and MRI
From The DNP-NMR Blog:
Parahydrogen-induced polarization transfer to 19F in perfluorocarbons for 19F NMR spectroscopy and MRI
Plaumann, M., et al., Parahydrogen-induced polarization transfer to 19F in perfluorocarbons for 19F NMR spectroscopy and MRI. Chemistry, 2013. 19(20): p. 6334-9.
http://www.ncbi.nlm.nih.gov/pubmed/23526596
nmrlearner
News from NMR blogs
0
04-14-2014 10:20 PM
Level anti-crossings in ParaHydrogen Induced Polarization experiments with Cs-symmetric molecules
From The DNP-NMR Blog:
Level anti-crossings in ParaHydrogen Induced Polarization experiments with Cs-symmetric molecules
Buljubasich, L., et al., Level anti-crossings in ParaHydrogen Induced Polarization experiments with Cs-symmetric molecules. J Magn Reson, 2012. 219(0): p. 33-40.
http://www.ncbi.nlm.nih.gov/pubmed/22595295
nmrlearner
News from NMR blogs
0
11-21-2013 01:14 AM
Kinetic Study of Propylene Hydrogenation over Pt/Al2O3 by Parahydrogen-Induced Polarization
From The DNP-NMR Blog:
Kinetic Study of Propylene Hydrogenation over Pt/Al2O3 by Parahydrogen-Induced Polarization
Salnikov, O.G., et al., Kinetic Study of Propylene Hydrogenation over Pt/Al2O3 by Parahydrogen-Induced Polarization. Appl. Magn. Reson., 2012. 44(1-2): p. 279-288.
http://dx.doi.org/10.1007/s00723-012-0400-3