BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 09-08-2014, 04:57 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Overhauser effects in insulating solids

From The DNP-NMR Blog:

Overhauser effects in insulating solids


Can, T.V., et al., Overhauser effects in insulating solids. J Chem Phys, 2014. 141(6): p. 064202.


http://www.ncbi.nlm.nih.gov/pubmed/25134564


We report magic angle spinning, dynamic nuclear polarization (DNP) experiments at magnetic fields of 9.4 T, 14.1 T, and 18.8 T using the narrow line polarizing agents 1,3-bisdiphenylene-2-phenylallyl (BDPA) dispersed in polystyrene, and sulfonated-BDPA (SA-BDPA) and trityl OX063 in glassy glycerol/water matrices. The (1)H DNP enhancement field profiles of the BDPA radicals exhibit a significant DNP Overhauser effect (OE) as well as a solid effect (SE) despite the fact that these samples are insulating solids. In contrast, trityl exhibits only a SE enhancement. Data suggest that the appearance of the OE is due to rather strong electron-nuclear hyperfine couplings present in BDPA and SA-BDPA, which are absent in trityl and perdeuterated BDPA (d21-BDPA). In addition, and in contrast to other DNP mechanisms such as the solid effect or cross effect, the experimental data suggest that the OE in non-conducting solids scales favorably with magnetic field, increasing in magnitude in going from 5 T, to 9.4 T, to 14.1 T, and to 18.8 T. Simulations using a model two spin system consisting of an electron hyperfine coupled to a (1)H reproduce the essential features of the field profiles and indicate that the OE in these samples originates from the zero and double quantum cross relaxation induced by fluctuating hyperfine interactions between the intramolecular delocalized unpaired electrons and their neighboring nuclei, and that the size of these hyperfine couplings is crucial to the magnitude of the enhancements. Microwave power dependent studies show that the OE saturates at considerably lower power levels than the solid effect in the same samples. Our results provide new insights into the mechanism of the Overhauser effect, and also provide a new approach to perform DNP experiments in chemical, biophysical, and physical systems at high magnetic fields.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Site-specific analysis of heteronuclear Overhauser effects in microcrystalline proteins
Site-specific analysis of heteronuclear Overhauser effects in microcrystalline proteins Abstract Relaxation parameters such as longitudinal relaxation are susceptible to artifacts such as spin diffusion, and can be affected by paramagnetic impurities as e.g. oxygen, which make a quantitative interpretation difficult. We present here the site-specific measurement of 13C and 15N heteronuclear rates in an immobilized protein. For methyls, a strong effect is expected due to the three-fold rotation of the methyl group. Quantification of the 13C...
nmrlearner Journal club 0 07-03-2014 06:04 AM
Rationalizing Overhauser DNP of nitroxide radicals in water through MD simulations
From The DNP-NMR Blog: Rationalizing Overhauser DNP of nitroxide radicals in water through MD simulations Sezer, D., Rationalizing Overhauser DNP of nitroxide radicals in water through MD simulations. Phys Chem Chem Phys, 2014. 16(3): p. 1022-32. http://www.ncbi.nlm.nih.gov/pubmed/24284869
nmrlearner News from NMR blogs 0 01-31-2014 06:44 PM
A comparative study of 1H and 19F Overhauser DNP in fluorinated benzenes
From The DNP-NMR Blog: A comparative study of 1H and 19F Overhauser DNP in fluorinated benzenes Neudert, O., et al., A comparative study of 1H and 19F Overhauser DNP in fluorinated benzenes. Phys Chem Chem Phys, 2013. 15(47): p. 20717-26. http://www.ncbi.nlm.nih.gov/pubmed/24192645
nmrlearner News from NMR blogs 0 01-14-2014 02:57 AM
A comparative study of (1)H and (19)F Overhauser DNP in fluorinated benzenes
From The DNP-NMR Blog: A comparative study of (1)H and (19)F Overhauser DNP in fluorinated benzenes Neudert, O., et al., A comparative study of (1)H and (19)F Overhauser DNP in fluorinated benzenes. Phys Chem Chem Phys, 2013. 15(47): p. 20717-26. http://www.ncbi.nlm.nih.gov/pubmed/24192645
nmrlearner News from NMR blogs 0 11-28-2013 05:07 AM
The Nuclear Overhauser Effect from a Quantitative Perspective
The Nuclear Overhauser Effect from a Quantitative Perspective Publication date: Available online 22 November 2013 Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br> Author(s): Beat Vögeli</br> The nuclear Overhauser enhancement or effect (NOE) is the most important measure in liquid-state NMR with macromolecules. Thus, the NOE is the subject of numerous reviews and books. Here, the NOE is revisited in light of our recently introduced measurements of exact nuclear Overhauser enhancements (eNOEs), which enabled the determination of multiple-state 3D...
nmrlearner Journal club 0 11-22-2013 03:09 PM
On the measurement of 15N-{1H} nuclear Overhauser effects. 2. Effects of the saturati
On the measurement of 15N-{1H} nuclear Overhauser effects. 2. Effects of the saturation scheme and water signal suppression Publication year: 2010 Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 24 September 2010</br> Fabien, Ferrage , Amy, Reichel , Shibani, Battacharya , David, Cowburn , Ranajeet, Ghose</br> Measurement of steady-state 15N-{1H} nuclear Overhauser effects forms a cornerstone of most methods to determine protein backbone dynamics from spin-relaxation data, since it is the most reliable probe of very fast motions on the ps-ns...
nmrlearner Journal club 0 09-25-2010 07:47 AM
[NMR paper] The effects of proteins on [Ca2+] measurement: different effects on fluorescent and N
The effects of proteins on measurement: different effects on fluorescent and NMR methods. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles The effects of proteins on measurement: different effects on fluorescent and NMR methods. Cell Calcium. 1996 Nov;20(5):425-30 Authors: Matsuda S, Kusuoka H, Hashimoto K, Tsujimura E, Nishimura T Previous reports showed that the presence of proteins shifts the apparent dissociation constant (Kd) of a fluorescent dye indicator to...
nmrlearner Journal club 0 08-22-2010 02:20 PM
[NMR paper] Structural effects of hydration: studies of lysozyme by 13C solids NMR.
Structural effects of hydration: studies of lysozyme by 13C solids NMR. Related Articles Structural effects of hydration: studies of lysozyme by 13C solids NMR. Biopolymers. 1990 Dec;29(14):1801-6 Authors: Kennedy SD, Bryant RG 13C-nmr spectra of lysozyme obtained at 50.3 MHz using both static and magic-angle-spinning-cross-polarization methods are reported at several water contents. The line widths and consequent resolution in the hydrated material is substantially improved over that in the lyophilized protein. The line narrowing is not...
nmrlearner Journal club 0 08-21-2010 11:04 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:11 PM.


Map