Le, D., et al., Optimizing sample preparation methods for dynamic nuclear polarization solid-state NMR of synthetic polymers. Macromolecules, 2014: p. 140613123939001.
This work compares the overall sensitivity enhancements provided by dynamic nuclear polarization (DNP) for the solid-state NMR characterization of polymer samples doped with biradicals and prepared either by film casting (FC), or by glass forming (GF) using 1,1,2,2-tetrachloroethane as the solvent. Analysis of amorphous and semicrystalline polymers (polystyrene, poly(ethylene oxide), polylactide, poly(methyl methacrylate)) of varying molecular weights showed that GF provided larger sensitivity enhancements than FC but yielded DNP-enhanced 13C CPMAS spectra of lower resolution for semicrystalline polymers, owing to line-broadening due to conformational distribution of the polymer chains in frozen solution. Moreover, use of deuterated solvents significantly reduced the intensity of the solvent signals in the DNP-enhanced 13C CPMAS spectra of polymers prepared by GF, while preserving the sensitivity enhancement observed for the polymer signals. For the polymers investigated here, both FC and GF performed better than incipient wetness impregnation, yielding overall sensitivity enhancements between 5 and 40.
Dynamic Nuclear Polarization NMR Spectroscopy Allows High-Throughput Characterization of Microporous Organic Polymers
From The DNP-NMR Blog:
Dynamic Nuclear Polarization NMR Spectroscopy Allows High-Throughput Characterization of Microporous Organic Polymers
Blanc, F., et al., Dynamic nuclear polarization NMR spectroscopy allows high-throughput characterization of microporous organic polymers. J Am Chem Soc, 2013. 135(41): p. 15290-3.
http://www.ncbi.nlm.nih.gov/pubmed/24028380
nmrlearner
News from NMR blogs
0
12-11-2013 08:50 PM
Dynamic Nuclear Polarization NMR Spectroscopy AllowsHigh-Throughput Characterization of Microporous Organic Polymers
Dynamic Nuclear Polarization NMR Spectroscopy AllowsHigh-Throughput Characterization of Microporous Organic Polymers
Fre?de?ric Blanc, Samantha Y. Chong, Tom O. McDonald, Dave J. Adams, Shane Pawsey, Marc A. Caporini and Andrew I. Cooper
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja408074v/aop/images/medium/ja-2013-08074v_0005.gif
Journal of the American Chemical Society
DOI: 10.1021/ja408074v
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/FZ0im8QfA90
nmrlearner
Journal club
0
10-03-2013 02:41 AM
Improved Structural Elucidation of Synthetic Polymers by Dynamic Nuclear Polarization Solid-State NMR Spectroscopy
From The DNP-NMR Blog:
Improved Structural Elucidation of Synthetic Polymers by Dynamic Nuclear Polarization Solid-State NMR Spectroscopy
Ouari, O., et al., Improved Structural Elucidation of Synthetic Polymers by Dynamic Nuclear Polarization Solid-State NMR Spectroscopy. ACS Macro Letters, 2013. 2(8): p. 715-719.
http://dx.doi.org/10.1021/mz4003003
nmrlearner
News from NMR blogs
0
09-19-2013 02:19 PM
Dynamic Nuclear Polarization Enhanced NMR in the Solid-State
From The DNP-NMR Blog:
Dynamic Nuclear Polarization Enhanced NMR in the Solid-State
Akbey, Ü., et al., Dynamic Nuclear Polarization Enhanced NMR in the Solid-State. 2013, Springer Berlin Heidelberg. p. 1-48.
http://dx.doi.org/10.1007/128_2013_436
nmrlearner
News from NMR blogs
0
08-26-2013 08:46 PM
[NMR paper] Dynamic Nuclear Polarization Enhanced NMR in the Solid-State.
Dynamic Nuclear Polarization Enhanced NMR in the Solid-State.
Dynamic Nuclear Polarization Enhanced NMR in the Solid-State.
Top Curr Chem. 2013 Jul 7;
Authors: Akbey U, Franks WT, Linden A, Rydmark MO, Lange S, Oschkinat H
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is one of the most commonly used spectroscopic techniques to obtain information on the structure and dynamics of biological and chemical materials. A variety of samples can be studied including solutions, crystalline solids, powders and hydrated protein...
nmrlearner
Journal club
0
07-09-2013 02:47 PM
Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25K
Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25K
January 2013
Publication year: 2013
Source:Journal of Magnetic Resonance, Volume 226</br>
</br>
We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20–25K and 9.4Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier , but also includes a corrugated waveguide for transmission of microwaves from...
nmrlearner
Journal club
0
12-15-2012 09:51 AM
Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K
Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K
Publication year: 2012
Source:Journal of Magnetic Resonance</br>
Kent R. Thurber, Alexey Potapov, Wai-Ming Yau, Robert Tycko</br>
We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20-25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier (Thurber et al., J. Magn. Reson. 2008) ,...
nmrlearner
Journal club
0
11-21-2012 04:33 AM
Dynamic nuclear polarization experiments at 14.1 T for solid-state NMR.
Dynamic nuclear polarization experiments at 14.1 T for solid-state NMR.
Related Articles Dynamic nuclear polarization experiments at 14.1 T for solid-state NMR.
Phys Chem Chem Phys. 2010 Jun 14;12(22):5799-803
Authors: Matsuki Y, Takahashi H, Ueda K, Idehara T, Ogawa I, Toda M, Akutsu H, Fujiwara T
Instrumentation for high-field dynamic nuclear polarization (DNP) at 14.1 T was developed to enhance the nuclear polarization for NMR of solids. The gyrotron generated 394.5 GHz submillimeter (sub-mm) wave with a power of 40 W in the second harmonic...