BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 12-18-2013, 04:00 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,715
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Optimization of SABRE for polarization of the tuberculosis drugs pyrazinamide and isoniazid

From The DNP-NMR Blog:

Optimization of SABRE for polarization of the tuberculosis drugs pyrazinamide and isoniazid


Zeng, H., et al., Optimization of SABRE for polarization of the tuberculosis drugs pyrazinamide and isoniazid. J Magn Reson, 2013. 237(0): p. 73-8.


http://www.ncbi.nlm.nih.gov/pubmed/24140625


Hyperpolarization produces nuclear spin polarization that is several orders of magnitude larger than that achieved at thermal equilibrium thus providing extraordinary contrast and sensitivity. As a parahydrogen induced polarization (PHIP) technique that does not require chemical modification of the substrate to polarize, Signal Amplification by Reversible Exchange (SABRE) has attracted a lot of attention. Using a prototype parahydrogen polarizer, we polarize two drugs used in the treatment of tuberculosis, namely pyrazinamide and isoniazid. We examine this approach in four solvents, methanol-d4, methanol, ethanol and DMSO and optimize the polarization transfer magnetic field strength, the temperature as well as intensity and duration of hydrogen bubbling to achieve the best overall signal enhancement and hence hyperpolarization level.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Over 35% liquid-state (13)C polarization obtained via dissolution dynamic nuclear polarization at 7 T and 1 K using ubiquitous nitroxyl radicals
From The DNP-NMR Blog: Over 35% liquid-state (13)C polarization obtained via dissolution dynamic nuclear polarization at 7 T and 1 K using ubiquitous nitroxyl radicals Cheng, T., et al., Over 35% liquid-state (13)C polarization obtained via dissolution dynamic nuclear polarization at 7 T and 1 K using ubiquitous nitroxyl radicals. Phys Chem Chem Phys, 2013. 15(48): p. 20819-22. http://www.ncbi.nlm.nih.gov/pubmed/24217111
nmrlearner News from NMR blogs 0 11-29-2013 09:58 PM
Cross Polarization for Dissolution Dynamic Nuclear Polarization Experiments at Readily Accessible Temperatures 1.2*
From The DNP-NMR Blog: Cross Polarization for Dissolution Dynamic Nuclear Polarization Experiments at Readily Accessible Temperatures 1.2*
nmrlearner News from NMR blogs 0 11-21-2013 01:14 AM
Utilization of SABRE-DerivedHyperpolarization ToDetect Low-Concentration Analytes via 1D and 2D NMR Methods
Utilization of SABRE-DerivedHyperpolarization ToDetect Low-Concentration Analytes via 1D and 2D NMR Methods Lyrelle S. Lloyd, Ralph W. Adams, Michael Bernstein, Steven Coombes, Simon B. Duckett, Gary G. R. Green, Richard. J. Lewis, Ryan E. Mewis and Christopher J. Sleigh http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja3051052/aop/images/medium/ja-2012-051052_0006.gif Journal of the American Chemical Society DOI: 10.1021/ja3051052 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner Journal club 0 07-27-2012 11:58 AM
Structure and Dynamicsof Mycobacterium tuberculosis Truncated HemoglobinN: Insights from NMR Spectroscopy and MolecularDynamics Simulations
Structure and Dynamicsof Mycobacterium tuberculosis Truncated HemoglobinN: Insights from NMR Spectroscopy and MolecularDynamics Simulations http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi201059a/aop/images/medium/bi-2011-01059a_0006.gif Biochemistry DOI: 10.1021/bi201059a http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/sSrnnNxPk8g More...
nmrlearner Journal club 0 12-02-2011 02:31 PM
Solution-state NMR structure and biophysical characterization of zinc-substituted rubredoxin B (Rv3250c) from Mycobacterium tuberculosis.
Solution-state NMR structure and biophysical characterization of zinc-substituted rubredoxin B (Rv3250c) from Mycobacterium tuberculosis. Solution-state NMR structure and biophysical characterization of zinc-substituted rubredoxin B (Rv3250c) from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011 Sep 1;67(Pt 9):1148-53 Authors: Buchko GW, Hewitt SN, Napuli AJ, Van Voorhis WC, Myler PJ Abstract Owing to the evolution of multi-drug-resistant and extremely drug-resistant Mycobacterium tuberculosis strains,...
nmrlearner Journal club 0 09-10-2011 06:51 PM
[NMR paper] NMR assignment of protein Rv1980c from Mycobacterium tuberculosis.
NMR assignment of protein Rv1980c from Mycobacterium tuberculosis. Related Articles NMR assignment of protein Rv1980c from Mycobacterium tuberculosis. J Biomol NMR. 2005 Sep;33(1):73 Authors: Danahy JM, Potter BM, Geisbrecht BV, Laity JH
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] 1H and 13C NMR characterization of hemiamidal isoniazid-NAD(H) adducts as possible in
1H and 13C NMR characterization of hemiamidal isoniazid-NAD(H) adducts as possible inhibitors of InhA reductase of Mycobacterium tuberculosis. Related Articles 1H and 13C NMR characterization of hemiamidal isoniazid-NAD(H) adducts as possible inhibitors of InhA reductase of Mycobacterium tuberculosis. Chemistry. 2003 May 9;9(9):2034-8 Authors: Broussy S, Coppel Y, Nguyen M, Bernadou J, Meunier B Isoniazid (INH) is easily oxidized with manganese(III) pyrophosphate, a chemical model of the KatG protein involved in activation of INH inside the...
nmrlearner Journal club 0 11-24-2010 09:01 PM
Novel Small Molecule Inhibitors of MDR Mycobacterium tuberculosis by NMR Fragment Scr
Novel Small Molecule Inhibitors of MDR Mycobacterium tuberculosis by NMR Fragment Screening of Antigen 85C. Related Articles Novel Small Molecule Inhibitors of MDR Mycobacterium tuberculosis by NMR Fragment Screening of Antigen 85C. J Med Chem. 2010 Nov 12; Authors: Scheich C, Puetter V, Schade M Protein target-based discovery of novel antibiotics has been largely unsuccessful despite rich genome information. Particularly in need are new antibiotics for tuberculosis, which kills 1.6 million people annually and shows a rapid increase in...
nmrlearner Journal club 0 11-16-2010 04:13 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:42 AM.


Map