Cheney, Daniel J., and Christopher J. Wedge. “Optically-Generated Overhauser Dynamic Nuclear Polarization: A Numerical Analysis.” The Journal of Chemical Physics 152, no. 3 (January 21, 2020): 034202.
Recently, an alternative approach to dynamic nuclear polarization (DNP) in the liquid state was introduced using optical illumination instead of microwave pumping. By exciting a suitable dye to the triplet state which undergoes a diffusive encounter with a persistent radical forming a quartet-doublet pair in the encounter complex, dynamic electron polarization (DEP) is generated via the radical-triplet pair mechanism. Subsequent cross-relaxation generates nuclear polarization without the need for microwave saturation of the electronic transitions. Here, we present a theoretical justification for the initial experimental results by means of numerical simulations. These allow investigation of the effects of various experimental parameters, such as radical and dye concentrations, sample geometry, and laser power, on the DNP enhancement factors, providing targets for experimental optimization. It is predicted that reducing the sample volume will result in larger enhancements by permitting a higher concentration of triplets in a sample of increased optical density. We also explore the effects of the pulsed laser rather than continuous-wave illumination, rationalizing the failure to observe the optical DNP effect under illumination conditions common to DEP experiments. Examining the influence of the illumination duty cycle, the conditions necessary to permit the use of pulsed illumination without compromising signal enhancement are determined, which may reduce undesirable laser heating effects. This first simulation of the optical DNP method therefore underpins the further development of the technology.
Optically generated hyperpolarization for sensitivity enhancement in solution-state NMR spectroscopy #DNPNMR
From The DNP-NMR Blog:
Optically generated hyperpolarization for sensitivity enhancement in solution-state NMR spectroscopy #DNPNMR
Dale, Matthew W., and Christopher J. Wedge. “Optically Generated Hyperpolarization for Sensitivity Enhancement in Solution-State NMR Spectroscopy.” Chemical Communications 52, no. 90 (2016): 13221–24.
https://doi.org/10.1039/C6CC06651H.
nmrlearner
News from NMR blogs
0
02-29-2020 09:52 PM
Overhauser Dynamic Nuclear Polarization for the Study of Hydration Dynamics, Explained #DNPNMR #ODNP
From The DNP-NMR Blog:
Overhauser Dynamic Nuclear Polarization for the Study of Hydration Dynamics, Explained #DNPNMR #ODNP
Franck, John M., and Songi Han. “Overhauser Dynamic Nuclear Polarization for the Study of Hydration Dynamics, Explained.” In Methods in Enzymology, 615:131–75. Elsevier, 2019.
https://doi.org/10.1016/bs.mie.2018.09.024.
We outline the physical properties of hydration water that are captured by Overhauser Dynamic Nuclear Polarization (ODNP) relaxometry and explore the insights that ODNP yields about the water and the surface that this water is coupled to. As...
nmrlearner
News from NMR blogs
0
05-06-2019 04:47 PM
In-situ Overhauser-enhanced nuclear magnetic resonance at less than 1 ?T using an atomic magnetometer #DNPNMR #ODNP
From The DNP-NMR Blog:
In-situ Overhauser-enhanced nuclear magnetic resonance at less than 1 ?T using an atomic magnetometer #DNPNMR #ODNP
Lee, Hyun Joon, Seong-Joo Lee, Jeong Hyun Shim, Han Seb Moon, and Kiwoong Kim. “In-Situ Overhauser-Enhanced Nuclear Magnetic Resonance at Less than 1 ?T Using an Atomic Magnetometer.” Journal of Magnetic Resonance 300 (March 1, 2019): 149–52.
https://doi.org/10.1016/j.jmr.2019.02.001.
nmrlearner
News from NMR blogs
0
03-24-2019 10:41 PM
A table-top PXI based low-field spectrometer for solution dynamic nuclear polarization #DNPNMR #ODNP
From The DNP-NMR Blog:
A table-top PXI based low-field spectrometer for solution dynamic nuclear polarization #DNPNMR #ODNP
Biller, Joshua R., Karl F. Stupic, and J. Moreland. “A Table-Top PXI Based Low-Field Spectrometer for Solution Dynamic Nuclear Polarization.” Magnetic Resonance in Chemistry 56, no. 3 (2017): 153–63.
https://doi.org/10.1002/mrc.4672.
nmrlearner
News from NMR blogs
0
06-20-2018 08:56 PM
Free Radical Imaging Using In Vivo Dynamic Nuclear Polarization-MRI #DNPNMR #ODNP
From The DNP-NMR Blog:
Free Radical Imaging Using In Vivo Dynamic Nuclear Polarization-MRI #DNPNMR #ODNP
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Utsumi, H. and F. Hyodo, Free Radical Imaging Using In Vivo Dynamic Nuclear Polarization-MRI. Methods Enzymol, 2015. 564: p. 553-71.
https://www.ncbi.nlm.nih.gov/pubmed/26477265
nmrlearner
News from NMR blogs
0
08-18-2017 04:59 PM
Chapter Sixteen - Overhauser Dynamic Nuclear Polarization Studies on Local Water Dynamics #DNPNMR
From The DNP-NMR Blog:
Chapter Sixteen - Overhauser Dynamic Nuclear Polarization Studies on Local Water Dynamics #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Kaminker, I., R. Barnes, and S. Han, Chapter Sixteen - Overhauser Dynamic Nuclear Polarization Studies on Local Water Dynamics, in Methods in Enzymology, Z.Q. Peter and W. Kurt, Editors. 2015, Academic Press. p. 457-483.
http://www.sciencedirect.com/science/article/pii/S0076687915004000
nmrlearner
News from NMR blogs
0
03-09-2017 12:11 AM
Theoretical treatment of pulsed Overhauser dynamic nuclear polarization: Consideration of a general periodic pulse sequence #DNPNMR
From The DNP-NMR Blog:
Theoretical treatment of pulsed Overhauser dynamic nuclear polarization: Consideration of a general periodic pulse sequence #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Nasibulov, E.A., et al., Theoretical treatment of pulsed Overhauser dynamic nuclear polarization: Consideration of a general periodic pulse sequence. JETP Letters, 2016. 103(9): p. 582-587.
http://dx.doi.org/10.1134/S0021364016090113
nmrlearner
News from NMR blogs
0
02-22-2017 06:28 PM
Quantitative cw Overhauser Dynamic Nuclear Polarization for the Analysis of Local Water Dynamics
Quantitative cw Overhauser Dynamic Nuclear Polarization for the Analysis of Local Water Dynamics
Publication date: Available online 4 July 2013
Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br>
Author(s): John M. Franck , Anna Pavlova , John A. Scott , Songi Han</br>
Liquid state Overhauser Effect Dynamic Nuclear Polarization (ODNP) has experienced a recent resurgence of interest. The ODNP technique described here relies on the double resonance of electron spin resonance (ESR) at the most common, i.e. X-band (~ 10 GHz), frequency and 1H nuclear...