BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 09-11-2013, 09:15 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default The Observation and Dynamics of 1H NMR Spin Noise in Methanol

From The DNP-NMR Blog:

The Observation and Dynamics of 1H NMR Spin Noise in Methanol


Jurkiewicz, A., The Observation and Dynamics of 1H NMR Spin Noise in Methanol. Appl. Magn. Reson., 2013: p. 1-18.


http://dx.doi.org/10.1007/s00723-013-0473-7


The observation of 1H spin noise in relation to prior established mag- netization and radiation damping has revealed a correlated dynamics. The spin noise of methyl satellites in 13C-enriched methanol was observed in the presence of an antiphase magnetization, created by the combination of 1H–13C J coupling evolution and radiofrequency (RF) ulses. A gradient pulse was applied to remove residue spin coherence coming from the RF pulses, and as a result spin noise phenomena were uncovered. While magnetization was in an inverted metastable state, the spin– spin relaxation time was shortened to prevent a super radiation burst. The relation between magnetization, radiation amping, and absorption or emission of the spin noise of methyl satellites has been studied. In relation to agnetization and radiation damping, spin noise bump and dip have been observed simultaneously in the same molecule. Both can be created through a proper inversion of magnetization. The revealed spin noise dynamics of spin system coupling to the probe circuit via radiation damping allows performance of a transformation from dip into bump by proper application of pulses combined with 1H–13C J coupling evolution.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Direct observation of the ion-pair dynamics at a protein-DNA interface by NMR spectroscopy.
Direct observation of the ion-pair dynamics at a protein-DNA interface by NMR spectroscopy. Related Articles Direct observation of the ion-pair dynamics at a protein-DNA interface by NMR spectroscopy. J Am Chem Soc. 2013 Feb 14; Authors: Anderson KM, Esadze A, Manoharan M, Bruschweiler R, Gorenstein DG, Iwahara J Abstract Ion pairing is one of the most fundamental chemical interactions and is essential for molecular recognition by biological macromolecules. From an experimental standpoint, very little is known to date about ion-pair...
nmrlearner Journal club 0 02-15-2013 05:21 PM
[NMR paper] Observation of scalar nuclear spin-spin coupling in van der Waals complexes.
From Mendeley Biomolecular NMR group: Observation of scalar nuclear spin-spin coupling in van der Waals complexes. Proceedings of the National Academy of Sciences of the United States of America (2012). Volume: 109, Issue: 31. Pages: 12393-7. Micah P Ledbetter, Giacomo Saielli, Alessandro Bagno, Nhan Tran, Michael V Romalis et al. Scalar couplings between covalently bound nuclear spins are a ubiquitous feature in nuclear magnetic resonance (NMR) experiments, imparting valuable information to NMR spectra regarding molecular structure and conformation. Such couplings arise due to a...
nmrlearner Journal club 0 11-22-2012 11:49 AM
[NMR paper] Observation of scalar nuclear spin-spin coupling in van der Waals complexes.
From Mendeley Biomolecular NMR group: Observation of scalar nuclear spin-spin coupling in van der Waals complexes. Proceedings of the National Academy of Sciences of the United States of America (2012). Volume: 109, Issue: 31. Pages: 12393-7. Micah P Ledbetter, Giacomo Saielli, Alessandro Bagno, Nhan Tran, Michael V Romalis et al. Scalar couplings between covalently bound nuclear spins are a ubiquitous feature in nuclear magnetic resonance (NMR) experiments, imparting valuable information to NMR spectra regarding molecular structure and conformation. Such couplings arise due to a...
nmrlearner Journal club 0 10-29-2012 12:57 AM
Methanol Strengthens Hydrogen Bonds and Weakens Hydrophobic Interactions in Proteins - A Combined Molecular Dynamics and NMR study.
Methanol Strengthens Hydrogen Bonds and Weakens Hydrophobic Interactions in Proteins - A Combined Molecular Dynamics and NMR study. Methanol Strengthens Hydrogen Bonds and Weakens Hydrophobic Interactions in Proteins - A Combined Molecular Dynamics and NMR study. J Phys Chem B. 2011 May 2; Authors: Hwang S, Shao Q, Williams H, Hilty C, Gao YQ A combined simulation and experimental study was performed to investigate how methanol affects the structure of a model peptide BBA5. BBA5 forms a stable ?-hairpin-?-helix structure in aqueous solutions....
nmrlearner Journal club 0 05-04-2011 04:14 PM
[NMR tweet] http://www.pulist.net/spin-dynamics-basics-of-nuclear-magnetic-resonance.html #quarks #and #nucleons #nuclear Spin Dynamics: Basics of N
http://www.pulist.net/spin-dynamics-basics-of-nuclear-magnetic-resonance.html #quarks #and #nucleons #nuclear Spin Dynamics: Basics of N Published by pubooks (Joel Michal) on 2011-03-31T07:54:11Z Source: Twitter
nmrlearner Twitter NMR 0 03-31-2011 08:09 AM
Signal enhancement in protein NMR using the spin-noise tuning optimum
Signal enhancement in protein NMR using the spin-noise tuning optimum Abstract We have assessed the potential of an alternative probe tuning strategy based on the spin-noise response for application in common high-resolution multi-dimensional biomolecular NMR experiments with water signal suppression on aqueous and salty samples. The method requires the adjustment of the optimal tuning condition, which may be offset by several 100 kHz from the conventional tuning settings using the noise response of the water protons as an indicator. Although the radio frequency-pulse durations are...
nmrlearner Journal club 0 10-09-2010 03:03 AM
Signal enhancement in protein NMR using the spin-noise tuning optimum.
Signal enhancement in protein NMR using the spin-noise tuning optimum. Signal enhancement in protein NMR using the spin-noise tuning optimum. J Biomol NMR. 2010 Oct 6; Authors: Nausner M, Goger M, Bendet-Taicher E, Schlagnitweit J, Jerschow A, Müller N We have assessed the potential of an alternative probe tuning strategy based on the spin-noise response for application in common high-resolution multi-dimensional biomolecular NMR experiments with water signal suppression on aqueous and salty samples. The method requires the adjustment of the...
nmrlearner Journal club 0 10-07-2010 10:33 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:39 PM.


Map