BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-21-2010, 09:12 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default New Fast NMR technique

New Fast NMR technique

Instrument time is precious and a plethora of different fast NMR experiments are continuously being proposed in order to reduce the time required to record an NMR spectrum. Actually, money is not the only reason, there are many other factors which motivate the development of techniques to increase the speed of data collection. For example, if one wants to make real-time studies of kinetic processes or protein folding, it’s pivotal to speed up the acquisition of NMR data, in particular multidimensional spectra.
On this issue, we have just put our bit into this field and published an article which describes the use of localized spectroscopy for parallel multidimensional NMR data acquisition. The key idea is to interleave the data acquisition at a variety of localized bands within a given interscan repetition time.



In other words, the method is based on MRI-type slice selection techniques (e.g. spinecho multislice and gradient echo multislice) where nuclear spins in different parts of the tube are excited and detected during subsequent transients while the previously used spins have time to relax towards equilibrium before being excited again, hence achieving a considerable timesaving in the overall acquisition.

We believe that this method; named PALSY, is a very powerful yet simple and general technique to reduce experimental time. Of course, there is a sensitivity penalty approximately proportional to the number of slices chosen, but the good thing is that the achievable resolution in any dimension is not compromised in any way.

Another point of interest is that it does not require any fancy data processing, just a simple data shuffling operation needed to extract the different sub-spectra contained into the acquired raw data matrix. This operation has been implemented into the Mnova Alpha version and will be available in the next official release. Meanwhile, as always, should anyone be interested in evaluating this alpha version, just drop a comment here and I will get in touch to provide an executable.

The article can be accessed here:

Fast multidimensional localized parallel NMR spectroscopy for the analysis of samples

I would like to take this opportunity to acknowledge and congratulate my friend Manolo for this work. He is the intellectual father of this pulse sequence and is currently extending this idea further to cover other NMR experiments.





More...

Source: NMR-analysis blog
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Projection-reconstruction technique for speeding up multidimensional NMR spectroscopy
Projection-reconstruction technique for speeding up multidimensional NMR spectroscopy. Related Articles Projection-reconstruction technique for speeding up multidimensional NMR spectroscopy. J Am Chem Soc. 2004 May 26;126(20):6429-40 Authors: Kupce E, Freeman R The acquisition of multidimensional NMR spectra can be speeded up by a large factor by a projection-reconstruction method related to a technique used in X-ray scanners. The information from a small number of plane projections is used to recreate the full multidimensional spectrum in the...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Biomolecular NMR using a microcoil NMR probe--new technique for the chemical shift as
Biomolecular NMR using a microcoil NMR probe--new technique for the chemical shift assignment of aromatic side chains in proteins. Related Articles Biomolecular NMR using a microcoil NMR probe--new technique for the chemical shift assignment of aromatic side chains in proteins. J Am Chem Soc. 2004 May 12;126(18):5873-8 Authors: Peti W, Norcross J, Eldridge G, O'Neil-Johnson M A specially designed microcoil probe for use in biomolecular NMR spectroscopy is presented. The microcoil probe shows a mass-based sensitivity increase of a minimal...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] A high-resolution technique for multidimensional NMR spectroscopy.
A high-resolution technique for multidimensional NMR spectroscopy. Related Articles A high-resolution technique for multidimensional NMR spectroscopy. IEEE Trans Biomed Eng. 1998 Jan;45(1):78-86 Authors: Li Y, Razavilar J, Liu KJ In this paper, a scheme for estimating frequencies and damping factors of multidimensional nuclear magnetic resonance (NMR) data is presented, multidimensional NMR data can be modeled as the sum of several multidimensional damped sinusoids. The estimated frequencies and damping factors of multidimensional NMR data...
nmrlearner Journal club 0 11-17-2010 11:06 PM
[BMNRC community] Perspectives on NMR in drug discovery: a technique comes of age
Perspectives on NMR in drug discovery: a technique comes of age http://www.nature.com/nrd/journal/v7/n9/abs/nrd2606.html Nature Reviews Drug Discovery 7, 738-745 (September 2008) | doi:10.1038/nrd2606 Go to BMNRC community to find more info about this topic.
nmrlearner News from other NMR forums 0 09-02-2010 04:59 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:11 AM.


Map