From The DNP-NMR Blog:
Near-unity nuclear polarization with an open-source 129Xe hyperpolarizer for NMR and MRI
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Already a bit older this article, but still a good read.
Nikolaou, P., et al., Near-unity nuclear polarization with an open-source 129Xe hyperpolarizer for NMR and MRI. Proc. Nat. Aca. Sci. USA, 2013. 110(35): p. 14150-14155.
http://www.pnas.org/content/110/35/14150.abstract
The exquisite NMR spectral sensitivity and negligible reactivity of hyperpolarized xenon-129 (HP129Xe) make it attractive for a number of magnetic resonance applications; moreover, HP129Xe embodies an alternative to rare and nonrenewable 3He. However, the ability to reliably and inexpensively produce large quantities of HP129Xe with sufficiently high 129Xe nuclear spin polarization (PXe) remains a significant challenge—particularly at high Xe densities. We present results from our “open-source” large-scale (~1 L/h) 129Xe polarizer for clinical, preclinical, and materials NMR and MRI research. Automated and composed mostly of off-the-shelf components, this “hyperpolarizer” is designed to be readily implementable in other laboratories. The device runs with high resonant photon flux (up to 200 W at the Rb D1 line) in the xenon-rich regime (up to 1,800 torr Xe in 500 cc) in either single-batch or stopped-flow mode, negating in part the usual requirement of Xe cryocollection. Excellent agreement is observed among four independent methods used to measure spin polarization. In-cell PXe values of ~90%, ~57%, ~50%, and ~30% have been measured for Xe loadings of ~300, ~500, ~760, and ~1,570 torr, respectively. PXe values of ~41% and ~28% (with ~760 and ~1,545 torr Xe loadings) have been measured after transfer to Tedlar bags and transport to a clinical 3 T scanner for MR imaging, including demonstration of lung MRI with a healthy human subject. Long “in-bag” 129Xe polarization decay times have been measured (T1 ~38 min and ~5.9 h at ~1.5 mT and 3 T, respectively)—more than sufficient for a variety of applications.
p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} span.s1 {font: 12.0px 'Apple Symbols'}
Go to
The DNP-NMR Blog for more info.